PhD értekezés

Rácz Sándor tű. őrnagy

2018
NEMZETI KÖZSZOLGÁLATI EGYETEM
HADTUDOMÁNYI ÉS HONVÉDTISZTKÉPZŐ KAR
KATONAI MŰSZAKI DOKTORI ISKOLA

RÁČZ SÁNDOR

A BEAVATKOZÓI BIZTONSÁG
NÖVELÉSE A KATASZTRÓFAVÉDELEM
TEVÉKENYSÉGEI SORÁN

Doktori (PhD) értekezés

Dr. Pányta Péter tű. alezredes PhD

Budapest, 2018.
BEVEZETÉS ... 7
A TUDOMÁNYOS PROBLÉMA MEGFOGALMAZÁSA ... 7
KUTATÁSI CÉLKITŰZÉSEK .. 10
KUTATÁSI HIPOTÉZISEK MEGFOGALMAZÁSA .. 12
ALKALMAZOTT KUTATÁSI MÓDSZEREK ... 12
A RELEVÁNS SZAKIRODALOM ÁTTEKINTÉSE ... 14
1. A MENTŐ TŰZVÉDELEM MAGYARORSZÁGON ... 16
 1.1. A mentő tűzvédelem felépítése ... 19
 1.2. A tűzoltás szervezete és vezetési elvei .. 22
 1.3. Irányítás a tűzoltási szervezetben .. 27
 1.4. A Katasztrófavédelmi Műveleti Szolgálat szerepe 34
 1.5. Alkalmazott eljárások .. 39
 1.6. Részkövetkeztetések ... 46
2. A TŰZOLTÁS SZERVEZETÉNEK KIALAKÍTÁSA KÁRHELYSZÍNEN 48
 2.1. Rendelkezés a kárhelyszínen .. 48
 2.2. A koordináció megvalósulása a tűzoltás szervezetében 51
 2.3. A vezetői szintek és a célok összefüggése .. 51
 2.4. Klasszikus vezetési stílus szerinti megközelítés 52
 2.5. Végrehajtás az önálló taktikai egység szempontjából 56
 2.6. A tűzoltás szervezetében megvalósuló stratégiai, és taktikai elvek 61
 2.7. Súlyponti erőmegosztás alapelve ... 63
 2.8. Súlypontok keresése ... 64
 2.9. Részkövetkeztetések ... 67
3. SÚLYPONTOK MEGHATÁROZÁSA NAGY ERŐFORRÁSIGÉNYŰ
 KÁRESETEK PÉLDÁIN KERESZTÚL ... 69
 3.1. Középmagas és magas épületek tűzoltása ... 69
 3.1.1. A terület alapú erő-eszköz megosztás középmagas-magas lakóépületnél 71
3.1.2. A feladat alapú erő-eszköz megosztás középmagas-magas lakóépületnél...... 71
3.1.3. Feladatok kiosztása .. 73
3.1.4. A beavatkozás szakaszai, jelentőségük a súlypontok felismerésében.............. 73
3.1.5. Az önálló kárhelyszíni vezetés középmagas, és magas lakóépületeknél 73
3.2. Radioaktív izotópok környezetében végrehajtott tűzoltói beavatkozások........ 75
3.2.1. A sugárforrások előfordulása .. 77
3.2.2. A sugárveszélyes területen végrehajtott beavatkozás főbb tartalmi elemei..... 80
3.2.3. A káreset felszámolásának alapelvei .. 87
3.2.4. A méréshez szükséges sugárfizikai ismeretek .. 89
3.2.5. Védekezés módszerei .. 93
3.2.6. Szervezési kérdések sugárveszélyes területen.. 99
3.2.7. A mérés indokoltsága egy példán keresztül ... 101
3.2.8. A megbízás kérdésköre .. 102
3.3. Nagy alapterületű, komplex feladatkört jelentő tűzesetek felszámolása 104
3.3.1. Bevezetés .. 104
3.3.2. Taktikai jellemzők a csarnok jellegű építmények tüzeinek oltásánál 105
3.3.3. Az erő eszköz számítás alapjai ... 107
3.3.4. Az erő eszköz igény modellezése .. 108
3.3.5. Vízzel oltás .. 109
3.3.6. Az oltóvíz mennyiségének változása a térfogat függvényében 111
3.4. Részkövetkeztetések .. 115

4. A TŰZOLTÁSVEZETŐK ATTITŰD-VIZSGÁLATA ... 121
4.1. Az I. számú kérdőíves vizsgálat ismertetése ... 121
4.2. A kérdőíves prominencia kutatás céljának, módszereinek ismertetése 122
4.2.1. A kutatás célja ... 122
4.2.2. Az alkalmazott kutatási módszer a kérdőívhez ... 123
4.3. A kérdőív eredményeinek kiértékelése ... 125
5. A TŰZOLTÓK FELKÉSZÍTÉSÉNEK LEHETŐSÉGEI ... 135

5.1. A megismerés folyamata és a kognitív térkép fejlesztése .. 135
5.2. A mérés fontossága .. 137
 5.2.1. Mérési pontosság .. 139
 5.2.2. A megszerzett információ felhasználása .. 139
5.3. A probléma felismerése ... 141
5.4. A modellalkotás folyamata az oktatásban ... 144
5.5. Az intervenciós kör szerepe a gyakorlati feladatmegoldásoknál 144
 5.5.1. Az intervenciós kör szakaszai .. 145
 5.5.2. A kísérlet célja ... 146
5.6. A képzés során alkalmazott szemléletmód .. 147
 5.6.1. Problémák az eljárás kiválasztásában .. 148
 5.6.2. A készenléti jellegű szolgálatot ellátó tűzoltó állomány továbbképzése 148
5.7. Új készség, és mentális térképfelhasználó gyakorlatok ... 152
5.8. Alkalmazott szerelési feladatok típusos helyszíneken .. 155
 5.8.1. Összehasonlító, alkalmazott, szerelési gyakorlat I. ... 156
 5.8.2. Az eredmények értékelése .. 157
 5.8.3. Összehasonlító (szituációs) szerelési gyakorlat II. ... 158
 5.8.4. Az eredmények értékelése .. 160
 5.8.5. Radiológiai műszaki mentési gyakorlat .. 161
5.9. Részkövetkeztetések ... 164

ÖSSZEGZETT KÖVETKEZTETÉSEK ... 167

ÚJ TUDOMÁNYOS EREDMÉNYEK ... 175

AJÁNLÁSOK .. 176

A KUTATÁSI EREDMÉNYEK FELHASZNÁLHATÓSÁGA ... 177

Felhasznált irodalom .. 178
A szerző publikációs jegyzéke ... 188
Mellékletek .. 193
Ábrajegyzék ... 193
Táblázatok jegyzéke .. 195
Képek jegyzéke ... 197
Az értekezés kohéziós táblázata ... 198
Kérdőívek ... 200
BEVEZETÉS
A TUDOMÁNYOS PROBLÉMA MEGFOGALMAZÁSA

A tűzvédelmi törvényben, valamint annak véghrajtásai rendeleteiben4, és a belső szabályozókban5 elrendelt módon a káreseti6 mentési tevékenység viszont a biztonságnak, a gyors, szakemberi segítségnyújtási folyamatában nyilvánul meg, amely feladatkört a hivatásos tűzoltó-parancsnokságok, és katasztrófavédelmi örsökö, valamint a mentési tevékenységet segítő önkormányzati, létesítményi tűzoltósgákok, önkéntes tűzoltó egyesületek látnak el.

A tűzoltói beavatkozások hatékonyságának a növelése olyan igény mind az állampolgárok, mind a feladatot végzők részéről, amely állandó fejlesztést igényel. Napjainkban nagy ütemben fejlődik a technológia, értve ezalatt, az ipari, mezőgazdasági, informatikai jellegű változásokat, de a mindennapjainkhoz is köthető számtalan fejlesztéseket. Akár a közlekedésünk, akár a lakásunk modernizációját vesszük szemügyre, láthatjuk, hogy az iparágok fejlődésével korábban csak ritkán előforduló gépészeti kialakítások, és informatikai támogatások találhatók a közvetlen környezetünkben. A

1 1996.évi XXXI. törvény 2§ 2.) bekezdés
2 Országos hatáskörű szervezet, amely a katasztrófák, tűzesetek, műszaki mentések felszámolására, valamint komplex lakosságvédelmi, és hatósági feladatokra lett létrehozva.
3 Az adott szerveknek az államigazgatási szervezetrendszere kivülre (az ügyfelek felé) ható jogi aktusainak rendje.
4 Belügyminiszteri rendeletek
5 Belügyminisztérium Országos Katasztrófavédelmi Főigazgatóság intézkedései, utasításai,
6 Tűzoltás, és műszaki mentés gyűjtőneve

http://www.parlament.hu/documents/10181/595001/Infojegyzet_2016_48_kozigazgatasi_hatosagi_eljaras.pdf/d0ce5bad-6a23-4a84-92b8-8a5eb641d4b3
közlekedés szempontjából elég csak a hibrid technológia, vagy a tisztán elektromos hajtású járművek tényerését említénünk. A városokban kialakuló „magasház” építési módok, mind azokat a lehetőséget hordozzák magukban, hogy a nagy létszámú lakosság az eddiginél is koncentráltabban lesz megtalálható a városokban. Így volt ez korábban is, hiszen gazdasági, és társadalmi okai egyaránt indokolták a városiasodás kialakulását, és fejlődését. Mind ezek a lehetőségek jelentik egyszerre a könnyebb, élhetőbb jól szervezhető társadalmak kialakulását, de a biztonság megvalósítására tett intézkedéseinknek, különös tekintettel a fejlesztéseknek is követnünk kell ezeket a trendeket.

Tűzoltói szempontból mind technikai értelemben, mind pedig oktatásban fel kell nöni a feladatok sokszínűségéhez, a minket körülvevő változatos, és többirányú veszélyforrásokat tartalmazó környezethez. Ehhez igazodva, a fejlesztések nem állnák meg Magyarországon sem, hiszen tűzoltó gépjárműveket gyártunk, egyéni védőeszközöket készítünk, valamint a rendszerszintű integrált riasztási rendszer fejlesztése történik napjainkban is a katasztrófavédelemnél.

A tudomány világa is aktív szerepet tölt be a fejlesztések tudásbázisának kialakításában, hiszen számos szakterület közeli mi az aktuális problémákat tudományos módszerekkel. A katasztrófavédelem által szervezett tudományos konferenciákon, szakfolyóiratokban publikálva találhatjuk a tűzvédelem, az iparbiztonság, vagy a polgári védelem fontos megoldandó problémáihoz köthető közleményeit. Az ipari katasztrófák feldolgozás során új biztonsági protokollok kidolgozása, vagy jogi intézményrendszer fejlesztése, az önkéntes mentőszervezetek kialakításának lehetőségei, vagy a tűzoltói beavatkozások elemzései által felismert összefüggések mind hozzájárulnak a szakterületek fejlesztéséhez.

A tűzoltói beavatkozás korszerűsítésének a lehetőségei egyrészt financiális kérdést, másrészt szemléletváltást, vagy inkább a hatékonyasághoz szorosan köthető elemzési szempontok előtérbe kerülését jelenthetik. Hogyan lehetséges a szoros időfüggésben végrehajtott tűzoltói munkát javítani, biztonságosabbá, és költséghatékonyabbá tenni? Mindenfépen vizsgáljuk a megadott intézkedéseink szakszerűségét, és amennyiben szükséges korrekciókat, fejlesztéseket hajtunk végre.

7 BM HEROSZ Zrt. által több típusú gépjárműfescs kendő, és speciális gépjármű került már forgalomba, amelyet a Hivatásos Katasztrófavédelmi Szervek használnak.
8 R13 tűzoltó bevetési védőruha gyártása a Gamma Műszaki Zrt. által.
9 ESR Egységes segélyhívó rendszer kialakítása, és a 112-es európai segélyhívó számhoz történő informatikai bekötése a rendőrségnak, a katasztrófavédelemnek és a mentőszolgálatnak.
10 Katasztrófavédelem 2012-2017 Nemzetközi Tudományos Konferenciák
A legrövidebb idő alatt megérkezett segítség a legnagyobb segítség! Figyelembe véve a problémák sokszínűségét, ezt kiegészíthetjük azzal, hogy a legrövidebb idő alatt a megfelelő képességgel (technikai, képzettségi) és mennyiségben érkezett segítség még nagyobb sikert ígér a végrehajtás szempontjából. A feltételezésem alapján ezek mellett a helyszíni irányítás vizsgálatára, a vezetési protokollok átgondolására, pontosabb feladatkiosztásra, illetve az esemény súlypontjaihoz rendelt megfelelő mennyiségű erő, eszköz, önálló irányítás alatti módszertani fejlesztési lehetősége is vizsgálandó. Vizsgálandónak tekintem továbbá a tűzoltók oktatásával kapcsolatos képzési módszereket a használható tudásszint megteremtésére.

Célkitűzésem a dolgozat megírásakor, hogy megvizsgáljuk a választott tűzoltói beavatkozások feladatait, feltételeit, valamint, hogy megállapítsák milyen hatást gyakorolnak egyes tényezők az események alakulására. Ezen belül a legfontosabb, teljesítményt meghatározó szervezési lehetőségeket beazonosítsanak, valamint annak részeit megismertesse a dolgozat olvasóivá. Eszközeink használhatósága, továbbá az alapvető tűzoltó-beavatkozási biztonság megvalósulásának a témaköré kerülvizsgálatra, de ezen túlmenően szükséges a jogszabályok, és belső szabályzók áttekintése, azok hatásának vizsgálatára a tűzoltói munka hatékonyságára. [1], [2], [3]

A hipotéziseim kialakításánál szükséges volt meghatározni, hogy mely tényezők befolyásoló hatását akarom megvizsgálni a tűzoltói beavatkozásoknál. A felismert összefüggések alapján új eszközt, és eljárást szeretném javasolni, amely által a végeredmény (pozitív) eltérést fog mutatni. Vizsgáltam az információszükségletet, az időtényezőt, a személyi- és a technikai feltételeket, és a felkészítés fejlesztésének a lehetőségét is. A feltételezésem alapján mindegyik tényező optimalizálható, kimutatható a feladat felismerésének és a végrehajtás szervezés hatékonyságának összefüggése a biztonságos és hatékony munkavégzéssel. [4], [5], [6]

\[a]1111 a sikeres beavatkozás érdekében, meghatározott alapvető feladat(ok), mely önálló (elkülönülő) erőt, eszközt és irányítást igényel (Rácz Sándor-Nagy László)
A TÉMA KÖRÜLHATÁROLÁSA

A katasztrófavédelem szerteága tevékenysége a védelem területén megkívánja, hogy leszűkítsen azt a kutatási területet, amelyet a dolgozatomban tárgyalni kívánok. Az iparbiztonság, polgári védelem, tüzvédelem szakterületek közül a tüzvédelem, azon belül a tűzoltást, műszaki mentés, a tűzmegelőzés, és a tűzvizsgálat területek közül elsősorban olyan tűzoltói káreseti munkavégzéssel kapcsolatos folyamatokat vizsgálók, mint például a tűzoltói beavatkozások szervezési kérdései, a bevetésre szánt erők riasztásának erőgazdálkodási lehetőségei, valamint az azt megelőző felkészülési időszak, az elméleti, és gyakorlati kiképzési folyamatok.

Külön jelentősége van a korai — feladathoz rendelt megfelelő mennyiségu — erőgazdálkodási lehetőségeink vizsgálatának. A tűzmegelőzés, és a veszélyes áru szállítása tekintetében sok összefüggés található a választott alkalmazott tűzoltási tevékenységek között, de a szabályzók, és a hatáskörrel rendelkező szervezeti egysége egysége által megvalósuló biztonsági szint nincs szerves kapcsolatban a témával. A magas szintű megelőző tevékenység ellenére is bekövetkeznek olyan események, amelyeket az elsődlegesen beavatkozó tűzoltó egységeknek kell elhárítaniuk. A kárelhárítás tekintetében, az általam speciálisnak minősített, vagy nagy erőket megmozgató feladatok felkészülési, és felszámolási részével foglalkozom.

KUTATÁSI CÉLKITŰZÉSEK

A katasztrófavédelem tűzoltó egységei által végrehajtott beavatkozások, feladat-végrehajtások sok esetben összetettek, és azok a körülmények, melyek során a tűzoltóknak az adott tevékenységet beavatkozóként el kell látni kockázati veszélyforrásokat hordoznak magukban. A különböző feladatok, és számos új kihívás nemesak a tűzoltók, hanem a helyszínen tartózkodó állampolgárok, vagy közreműködő szervezetek számára jelentenek kockázatot.

Ezek a körülmények mind a beosztottak, mind a vezetők számára olyan ismeretek, kompetenciák, és technikai eszközök megszerzését igénylik, melyekkel növelhető a beavatkozók, és a beavatkozás biztonsága. A célok, elsősorban az operatív tevékenységek különböző szintjein jelentkező, fejlesztési lehetőséget magában hordozó végrehajtási protokollok, és az eszközrendszer – a kihívásokkal arányos – modernizációját célozza meg, összhangban a technikai vívmányok adta új lehetőségekkel. Célok továbbá ezzel összhangban, hogy a tűzoltók felkészítését megvizsgálják, és javaslatot tegyek az elvi
fejlesztésre vonatkozóan. Ezek a keletkező eredmények, egy olyan fejlesztési folyamatot indíthatnak el, amely mérhetőségen alapul. A kutatásom folyamán, elsősorban a tűzoltói erőgazdálkodási rendszer racionális átalakíthatóságát tűztem ki célul, az eszközök, és az emberi erőforrások optimális felhasználásával, továbbá ezek irányításával összefüggésben. Mindezekkel összhangban tehát a különféle célú mentési feladatok alapvető körülményeinek, valamint a kockázatot jelentő elemek nagyságának, és irányainak meghatározását szeretném elvégezni. Vizsgálni tervezem a biztonság növelésére alkalmazható szervezési lehetőségeket, amelyekből hatékonyabb, gazdaságosabb, és biztonságosabb eljárások kidolgozása lehetséges.

Ezen szempontok figyelembe vételével:

C1: Megvizsgálom az önálló erőt, eszközt, és irányítást biztosító vezetési elv kialakításának lehetőségeit, és feltételeit.

C2: Elemezni fogom az alapvető tűzoltói feladatokat azok fontossága, erőforrásigénye, és szervezése szempontjából.

C3: Beazonosítom, és megvizsgálom az általam kiválasztott káresettípusoknál, a hatékonyiségot meghatározó, legfontosabb elemeket az erőgazdálkodás szempontjából.

C4: Megvizsgálom a tűzoltásvezetők viszonyulását technikai, és képzettség tekintetében az általános tűzoltási tevékenységhez, valamint a rejtett veszélyekkel kapcsolatos tűzoltói beavatkozásokhoz, amelyből következtetéseket kivánom levonni a technikai, és a kiképzési fejleszthetőségre vonatkozóan.

C5: A tűzoltók, és a tűzoltásvezetők felkészítésének vizsgálatával meg kívánom határozni azokat lehetőségeket, amelyek alkalmazásával mérhető módon lesz eredményesebb a felkészítés.
KUTATÁSI HIPOTÉZISEK MEGFOGALMAZÁSA

1. Feltételezem, hogy az egynél több, térben, és feladattípusban eltérő, végrehajtandó feladatot tartalmazó tűzoltói kérelmeket, az önálló feladatok végrehajtására létrehozott taktikai egységektől független személy által kell irányítani. 1.-2. fejezet

2. Feltételezem, hogy a tűzoltói beavatkozásokhoz szükséges erőforrásokat, az elkülönülő erőt, eszközt és irányítást igénylő alapvető feladatok alapján kell meghatározni. 1-2. fejezet

3. Feltételezem, hogy a káresetekhez szükséges erőforrásokat terület alapú, feladat alapú, és idő alapú erőmegosztási szempontok szerint kell vizsgálni, amely pontosabb erőmeghatározást tesz lehetővé, ami által nő a beavatkozás biztonsága, csökkenthető a kárérték, és növelhető a segmentált érték.3. fejezet

4. Feltételezem, hogy a tűzoltásvezetők bizonyos tűzoltói tevékenységek esetében eltérően vélekednek a felkészülésértékek, amely által kimutatható melyek azok a területek, amelyek fejleszthetők. 4. fejezet

5. Feltételezem, hogy a tűzoltóságok felkészítési rendszere új elemek integrációjával fejleszthető, amely hatással lehet a tűzoltói beavatkozások sikerességére.5. fejezet

ALKALMAZOTT KUTATÁSI MÓDSZEREK

Az tudományos megismerési folyamatokban előnyben részesítettem a műszaki szemléletű, mérésen alapuló módszereket. A vizsgálatain során egyaránt alkalmaztam kvantitatív és kvalitatív vizsgálati módszereket

A megismerés folyamatában általános módszerként:
- Logikai módszerek alkalmazásával, úgy mint indukcióval az egyedi jelenségek feldolgozásával az általánosítási, dedukcióval az általános megállapításokból a részekre való következtetésig, analógiával a hasonlóságon alapuló egyezésre, analízissel az elemzésre, és a részekre való bontásra, míg szintézissel az összefoglalásra, és az egységbe foglalásra jutottam el
- Filozófiai tételek alkalmazásával dialektikus gondolkodással az ellentmondások felderítésével, azok feloldásával az igazság felismerésére. Racionalizmussal az értelemmel felfogható, észrevetlen nyugvó gondolkodást, empirizmussal pedig az érzékekkel megismert környezet tárgyainak, eseményeinek és összefüggéseinek tapasztalati megismerését végeztem.
A témámat érintő ismeretek feldolgozását, és az alkalmazott kutatásomat illetően:

− Elvégeztem a szakterület feladatait előíró jogszabályok, és vonatkozó belső szabályozók áttekintését, rendszerezését, és elemzését a témakör szempontjából. Részt vettem a témámat érintő hazai és külföldi konferenciákon (Románia, Szerbia, Németország) és egyéb szakmai rendezvényeken, szimpóziumokon, tudományos műhelyekben, egyetemi kiválósági programban. Konzultációkat folytattam a katasztrófavédelem tűzoltó egységeinek a végrehajtó állományával és olyan vezetőivel, akik nagy tapasztalattal rendelkeznek káresetek felszámolásában. Nemzetközi szinten megvizsgáltam a hasonló területeken elért eredményeket és következtetéseket vontam le azok adaptálhatóságát tekintve hazánk tűzoltóságaira.

1.−2.5. fejezet
− A katasztrófavédelem mentési tevékenységeivel kapcsolatos ismereteket elemeztem az elérhető nyomtatott és elektronikus szakirodalma, írásos, képi és mozgóképi anyagok, valamint az egyéb leírások, tanulmányok és saját vizsgálataim alapján. 1-2-3. fejezet
− Elemeztem a veszélyes tűzoltói beavatkozásokat valamint azok körülményei, és a beavatkozások során felhasznált erőforrásokat. A tudományos megismerési folyamán előnyben részesített a műszaki szemlélet, mérésen alapuló módszereket. 3. fejezet
− Saját szerkesztésű kérdőív használatával, matematikai, és statisztikai módszerekkel, kérdőíves vizsgálatok elemzését végeztem. A kérdőíves vizsgálataim során egyaránt alkalmaztam kvantitatív és kvalitatív vizsgálati módszereket. 4. fejezet.

Kutatómunkámat nehezítette

Kutatómunkámát nehezítette a témá speciális felépítése, amely során nagyrészt csak az eseménykezelés során gyűjthetők a primer információk. A műveletek elemzése másodlagos információkat tartalmaz, az események kezelésének jogszabályi megfelelőségét vizsgálja. A választott eljárások egy része viszonylag kis számmal van jelen, azok komplexek, és nehezen modellezhetők.
Kutatómunkámat könnyítette

A kutatómunkámat megkönnyítette a közvetlen munkakapcsolat a BM OKF szakterületi vezetőivel, és a Fövárosi Katasztrófavédelmi Igazgatóság nagy tapasztalattal rendelkező tűzoltás vezetőivel, továbbá a rendelkezésemre álló adatbázisok a katasztrófavédelem tűzoltó egységei tekintetében. Segítségéremre volt továbbá, hogy részt vehettem a Nemzeti Közszolgálati Egyetem által indított KÖFOP 2.1.2-VEKOP-15-2016-00001 azonosítószámú „A jó kormányzást megalapozó köszolgálatfejlesztés” elnevezésű kiemelt projekt keretében, meghirdetett Concha Győző Doktori Programban.

A RELEVÁNS SZAKIRODALOM ÁTTEKINTÉSE

atomenergiáról), és végrehajtási rendeletei a speciális feladatokkal kapcsolatban tartalmazták azokat az alapelveket, amelyek megvalósulását megvizsgálhattam a katasztrófavédelem mentő tüzvédelmi vonatkozásában.

AZ ÉRTEKEZÉS SZERKEZETE

Az értekezésemet öt fő fejezetre bontva építettem fel. Az első fejezetben rövid áttekintést nyújtok a mentő tüzvédelem jogszabályi háttéréről, a szervezet belső felépítéséről, a tevékenységet érintő fő szervezési elvekről, valamint egy új lehetséges irányról a tűzoltás szervezetének kialakítása, és működtetése szempontjából.

A második fejezetben a tűzoltásvezetőhöz köthető szervezési kérdéseket dolgoztam fel, amely szervesen kapcsolódik a feladatok pontosabb kiosztásával elérhető védelmi szint kialakításához.

A harmadik fejezetben, három példán keresztül teszek javaslatot a középmagas, és magas lakóépületek feladatszervezési elveinek a fejlesztésére, a radioaktív izotóppakkal kapcsolatban a mérések szükségsességére, és a nagy alapterületű létesítmények tűzoltása során, általam fontosnak ítélt szempontokkal feladatokat jelentkező erőgazdálkodási, szervezési folyamatokra. Ezek összhangban az első, és második fejezetben foglaltakkal szintén fejleszthetők, és a feladat végrehajtása szempontjából – különösen a szükséges erők korai meghatározása szempontjából-jelentőséggel bírnak.

A negyedik fejezetben megvizsgálok a tűzoltásvezetők attitűdjét különböző mentési eljárások technikai feltételein szerződése és saját képzettségük között.

Az ötödik fejezetben a képzéseket, és az oktatási eljárásaink fejleszthetőségét tárgyalom, amelyek összhangban vannak az első három fejezet téziseivel. A mérhetőségen alapuló, kizárólag kvantitatív módon megközelített felkészítés mindegyik alkalmazott tűzoltási eljárásunk esetén fontos. A gyakorlati problémáink megoldhatósága intervenciós kör alapján a korábbi oktatási eljárásokkal összhangban van, de további eljárásfejlesztési tartalékokat lehet mozgósítani, amennyiben a mérhető paramétereket beazonosítjuk, és meghatározunk a végrehajtáshoz szükséges kritérium-követelményeket.

A fő fejezetek után összefoglalom az eredményeimet, majd ezek alapján javaslatokat teszek a szervezési kérdések hatékonyabbá tételere, eredményeimnek az oktatás és képzések keretében történő ismertetésére.

A kutatásomat 2018. október 30-án zártam le.
1. A MENTŐ TŰZVÉDELEM MAGYARORSZÁGON

A tűzoltás, és a műszaki mentés a katasztrófák elleni védekezésért felelős miniszter\(^{12}\) által kijelölt személynek, a Belügyminisztérium Országos Katasztrófavédelmi Főigazgatóság (a továbbiakban BM OKF) vezetőjének a feladata, hogy megszervezze az általa vezetett szervezet felkészítését ezzel a tevékenységgel kapcsolatban. A tűzvédelmi törvény által előírt több tűzvédelmi feladatot, a tűzmegelőzés, a mentő tűzvédelmi feladatok beleértve a műszaki mentést is, és a tűvizsgálat. Mivel szükségszerű lehatárolni a témát, a dolgozatban csak a mentő tűzvédelemmel kapcsolatos általános, és különleges eljárásokat vizsgáltam meg. Azok a tevékenységek azonban, amelyeket tűzoltók végeznek, nem kizárólag a mentő tűzvédelmet érintő jogszabályokon, hanem más ágazatokat szabályozó törvényeken, rendeleteken keresztül is szabályozásra kerülnek. [8]

A tűzoltók káreseti\(^{13}\) tevékenységét alapvetően Belügyminisztériumi rendeletek, és BM OKF Főigazgatói intézkedések, utasítások határozzák meg. A szabályzók a beavatkozás rendjét, a végzendő feladatok, a résztvevők körét, valamint az igénybe vehető erőket, eszközöket, és az elhárításhoz feltétlenül szükséges alapvető jogokat, valamint egyéb kötelezettségeket írják elő. Sok esetben a káresetek felszámolását irányító személyek\(^{14}\) kapott jogai egyben korlátozásokat is jelentenek az állampolgárok, a közlekedésben résztvevők számára. Joga van lezárni területet, behatolni magánterületre, valamint bontást is elrendelhet a sikeres életmentés\(^{15}\), vagy tűzoltás érdekében. [2, 17§] Érzékeny terület tehát megállapításokat tenni egy protokoll, szükségszerűségére, hiszen ez kihat a tűzvédelem összes szereplőjére is.

A tűzoltók régi mondása szerint „a tűzoltó oda megy, ahonnan mindenki menekül”, ezért fontos, hogy a határozott pontos utasításokkal vezetett tűzoltók a veszélyes környezetben is összehangoltan, és hatékonyan dolgozzanak, hiszen az „ellenséges” környezet nem tűr meg felelőtlen munkavégzést. Az eredeti állapotból eltérő káreseti környezetben pontosan kell meghatározni a végzendő feladatok körét, és a munkavégzéssel érintett terület határait. A feladatok szükségszerűsége határozza meg lényegében a felhasználó által kínált erőforrások mennyiségét, és minőségét. Az erőforrások feladatra, és területre csoportosított halmazai, kritikusak az erők meghatározásánál. Egy új fogalom bevezetésével szeretném kezdeni a dolgozatot, amely fontos eleme a kutatott témának. Az önálló

\(^{12}\) belügyminiszter
\(^{13}\) a tűzeset, és a műszaki mentés gyűjtőfogalma 6/2016 (VI.24) BM OKF Utasítás
\(^{14}\) tűzoltásvezető
\(^{15}\) a közvetett, vagy közvetlen életveszélyben történő személyek veszélyeztetett helyről történő mentése
tűzoltói erőt, eszközt, és irányítást igénylő folyamatok definíciójaként a súlypont fogalmi meghatározást tartom fontosnak bevezetni, amely alapja lehet a későbbi szervezési fejlesztési irányoknak. Feltételezésem alapján, amennyiben a káreset lezajlását vizsgáljuk, azt látjuk, hogy a kötelezően kezelendő problémák, alapvető tűzoltói feladatai a kezelt eseménynek, amelyek tekintetében az erőmegosztási, szervezési kérdések meghatározók. Ezen súlypontok kezelésére tett erőfeszítéseink hatással vannak az eseménykezelés sikerességére. Ez a sikeresség a legbiztonságosabb, legkevesebb erőforrásból megoldható, legrövidebb időn belül végrehajtott, legnagyobb megmentett értéket jelenti. Tehát hatékonyságra törekedünk, amikor a megoldási lehetőségek közül a vélhetően legkedvezőbbet választjuk ki. Tekintsük a tűzoltói beavatkozást egy rendellenes folyamatba történő beavatkozásnak, annak érdekében, hogy megszünjessünk egy olyan állapotot, amely veszélyt jelent az egészségre, a vagyontárgyainkra, és a környezetre. [1,4§ a.][8]

A tűzoltói beavatkozásokat két csoportba sorolja a jogszabály:

tűzoltási feladat: „a veszélyeztetett személyek mentése, a tűz terjedésének megakadályozása, az anyagi javak védelme, a tűz eloltása és a szükséges biztonsági intézkedések megtétele, továbbá a tűz közvetlen veszélyének elhárítása” [1, 4§ f.]

műszaki mentés: „természeti csapás, baleset, káreset, rendellenes technológiai folyamat, műszaki meghibásodás, veszélyes anyag szabadba jutása vagy egyéb cselekmény által előidézett veszélyhelyzet során az emberélet, a testi épség és az anyagi javak védelme érdekében a tűzoltóság részéről - a rendelkezésére álló, illetőleg az általa igénybe vett eszközökkel - végzett elsődleges beavatkozói tevékenység” [1, 4§ g.]

Tehát egy eseményről beszélünk, amelyet a környezetére gyakorolt radiológiai, biológiai, vegyi, fizikai hatásai jellemzik, és emberi beavatkozás nélkül további káros hatásokat fejt ki. A cél, hogy olyan állapotot alakítsunk ki, amely további veszélyt nem jelent a környezetre.

16 1996. évi XXXI. törvény a tűz elleni védekezésről, a műszaki mentésről és a tűzoltóságról (Letöltve: 2018. május 22.) értelmező rendelkezések
17 1996. évi XXXI. törvény a tűz elleni védekezésről, a műszaki mentésről és a tűzoltóságról (Letöltve: 2018. május 22.) értelmező rendelkezések
A személyekre, vagyontárgyakra, és a környezetre negatív potenciált kifejtő hatások jellemzői:

- nagyságuk,
- irányuk,
- időbeni lefolyásuk,
- a környezetre gyakorolt hatásuk (rövid távú, hosszú távú)

A tűzoltó biztonságát több körülmény befolyásolja, amely két csoportra bontható a felkészültség szempontjából. A nem változtathatóra fel tudunk készülni, méghozzá a másik — tőlünk függő — körülmények elemeinek a fejlesztésével.

Nem változtatható

- A káreset környezete, amely nem változtatható csak a végrehajtás folyamatában

Változtatható

- Egyéni, és csapat védőeszközök (fejleszthető)
- Arányos beavatkozó létszám, és technikai feltételek (optimalizálható)
- Kiképzettség, fizikai-, szakmai felkészültség (fejleszthető)
- Szervezési elvek, szervezési módszertan

Tűzesetnél, és műszaki mentésnél a veszélyeztetett személyek, és egyéb anyagi értékek megmentése, de például veszélyes anyagok esetében a környezetre gyakorolt hatásának a csökkentése is cél. Függvényel abrázolva, az esemény lezajlása, különös tekintettel annak kifejlődési szakaszára lehet lineáris, vagy közel lineáris, de lehet exponenciálisan emelkedő is. Feltételezésem szerint egy veszélyhelyzeti folyamat aktívnak tekinthető, amennyiben a környezetre gyakorolt negatív hatása – beavatkozás nélkül – a vizsgálat pontjában még mérhető emelkedést mutat. Az esemény kezdetekor fel kell tudni ismerni azokat a folyamatokat, amelyek aktívak!

A feladatunk, a folyamatok aktív időszakának a lecsökkentése, illetve megszüntetése, ezen belül a kritikus pontok – a mindenképpen azonnali intézkedést igénylő helyzetek – és paramétereknek a beazonosítása, amelyek ezeket a szakaszokat befolyásolják. A cél, ezeknek a kritikus folyamatoknak a kezelése, megfelelő racionális válaszlépések aktiválásával. Káresetek felszámolásánál a hatékony beavatkozási formák kiválasztása, és alkalmazása, majd szükség esetén azonnali korrekció a választott eljárásunk
tekintetében. Folyamatos feladat a beavatkozás alkalmával kiválasztott eljárás "minőségenek" mérése, a későbbi elemzések során a segmentet érték, és az alkalmazott erőforrás arányának, vizsgálata, a biztonságra való törekvés fenntartásával.

1.1. A mentő tűzvédelem felépítése

Ahhoz, hogy a teljes folyamatot megértsük, szükséges megismernünk annak szereplőit, eszközeit valamint a végrehajtásra hatással lévő szabályzókban foglalt jogokat, és kötelezettségeket. A Magyarország területén a tűzvédelmi feladatok megvalósulásáért a katasztrófavédelem központi szervének a vezetője a felelős, aki a katasztrófavédelmi törvény értelmében meghatározza a tűzvédelmi és műszaki mentési, a katasztrófavédelmi feladatok végrehajtásának szakmai követelményeit, irányítja és ellenőrzi az alárendelt szervek szakmai munkáját és tevékenységét.

A katasztrófavédelem megvalósításában részt vevő hivatásos katasztrófavédelmi szerv:

„a) az országos illetékességgel működő központi szerv,
b) a megyei, fővárosi illetékességgel működő területi szervek,
c) helyi szervek a katasztrófavédelmi kirendeltségek és a hivatásos tűzoltóságok”

A mentő tűzvédelem végrehajtó egységei a felsorolt pontok szerinti hierarchiában helyezkednek el a katasztrófavédelem szervezetében. A tűzoltóparancsnokságok alárendeltségében találjuk a Katasztrófavédelmi Őrsöket.

A tűzvédelmi törvény

A tűzoltás, és a műszaki mentés nem csak a hivatásos katasztrófavédelmi szakemberek tevékenységeként jelenik meg a törvényben. A magánszemélyek, a gazdálkodó tevékenységet folytató magánszemélyeknek, jogi személyeknek, jogi személyiséggel nem rendelkező szervezeteknek is szükséges a tűzvédelem vonatkozásában nekik meghatározott feladatokat elvégezni. A törvény meghatározza a hivatásos tűzoltóság fogalmát, mint helyi szintű katasztrófavédelmi szervet, az önkéntes tűzoltó egyesületek jogállását, mind a közreműködő, mind pedig a beavatkozó önkéntes tűzoltó egyesületek tekintetében, a létesítményi tűzoltóságok, és az önkormányzati tűzoltóságok feladatait.

[18] 2011.évi CXXVIII. törvény a katasztrófavédelemről és a hozzá kapcsolódó egyes törvények módosításáról
Magyarországon 20 katasztrófavédelmi területi szerv van, amely alatt a 19 megyei, és a Fővárosi Katasztrófavédelmi Igazgatóságot kell érteni. A fent említett szervek alárendeltségében 65 Katasztrófavédelmi kirendeltség található, amelyekhez a hivatásos tűzoltóparancsnokságok tartoznak. A 105 hivatásos tűzoltóparancsnokság, a 44 katasztrófavédelmi örs, a 60 önkormányzati tűzoltóság, a 66 létesítményi tűzoltóság, és a 48 beavatkozó önkéntes tűzoltó egyesület vesz részt a mentő tűzvédelemmel kapcsolatos operatív feladatokban.

![Diagram](image)

1. ábra A katasztrófavédelem központi, területi, és helyi szervei (készítette Rácz Sándor)

Az önálló működési területtel rendelkező hivatásos tűzoltóság mellett, az elsődleges műveleti körzettel rendelkező önkormányzati tűzoltóságok, mint elsődleges beavatkozók látják el feladataikat a számokra, a BM OKF főigazgatója által kijelölt területeken. A 2012. után létesített katasztrófavédelmi örsök a hivatásos tűzoltóparancsnokságokhoz tartozó szervezeti egységek ként a tűzoltóságok diszlokációját segítségével elő, közelebb hozva az állampolgárokat a biztonságot. A tűzoltóparancsnokságok, és örsök állománya 24 órás készenlétéi jellegű szolgálatot lát el, amely garantálja hogy az állampolgári bejelentést követően, a riasztási jelzés után 120 másodperc alatt elindulhassanak a megfelelő gépjárművekkel, és szakfelszerelésekkel a káreset felszámolását elvégezni.

A hivatásos katasztrófavédelmi szerv központi szerve vezetője

A hivatásos katasztrófavédelmi szerv központi szervének vezetője tevékenységei között szerepelnek a tűzvédelem törvényen foglaltak szerint azok a tevékenységek, amelyek szükségesek a mentő tűzvédelemben található szereplők magas szintű munkavégzéséhez. Megemlíte ezek közül, kiadja a tűzoltóságok szerelési szabályzatát, a tűzoltási és műsztaki
mentési szabályzatot, valamint meghatározza a tűzoltóság tűzoltási és műszaki mentési tevékenységének részletes szabályait, a hivatásos tűzoltóságok működési területét, a hivatásos tűzoltóságok készenléten tartandó legkisebb gépjármű és technikai eszközállományát és műszaki megfelelőségük ellenőrzésének rendjét, a hivatásos tűzoltóságok létszámát [1].

A szakterületek szakmai vezetése

A dolgozatomban nem fogom vizsgálni a katasztrófavédelem teljes irányítási struktúráját, csak a mentő tűzvédelemmel közvetlen összefüggésben lévő szakmai irányítást szeretném bemutatni. A szakmai munka megvalósulását az iparbiztonság, polgári védelem, és a tűzvédelem tekintetében a felügyelők, és a főfelügyelők koordinálják. A dolgozatom témájákként választott mentő tűzvédelmi szakmai feladatokat az országos tűzoltósági főfelügyelő fogja össze, aki a megyei (fővárosi) főfelügyelőkön, és a kirendeltségi felügyelőkön keresztül végzi a mentő tűzvédelemmel kapcsolatos jogszabályokban, és belső szabályzókban előírt feladatokat.

A tűzoltási és műszaki mentési szabályzat

A tűzoltás tűzoltási, és műszaki mentési szabálya a tűzvédelmi törvény egyik végrehajtási rendelete. Nevesíti a tűzoltás szervezetének résztvevőit a beosztásuk alapján, feladatait, a vezető jogállását a szervezetben, jogait, kötelezettségeit, a tűzoltás átadás-átvételének szabályait, valamint a tűzoltási szervezet általános feladatait a:

- tűzjelzés,
- riasztás,
- vonulás,
- visszajelzési kötelezettségek,
- beavatkozás előkészítése,
- tűzoltás, életmentés,
- utómunkálatok,
- bevonulás, bevonulás utáni feladatok, és a készenlét visszaállítása tekintetében.[2, 35§-50§]

Rendelkezik továbbá a riasztási fokozatokról, amelyek a későbbiekben kifejtésre kerülő önálló taktikai feladatok végrehajtását végző szervezeti egységekből, a fél rajokból, és a rajokból képzett tűzoltói erők mennyiségi meghatározását segíti.

19 39/2011.(XI.15) BM rendelet A tűzoltóság tűzoltási, és műszaki mentési tevékenységének általános szabályairól
A riasztási fokozatok a rendelet 37§ (6) a., pontja alapján a beavatkozásokhoz:
I-es a riasztási fokozathoz legfeljebb 2 raj, amely félrajokkal is kiadható,
II-as a riasztási fokozathoz 2,5-3 raj,
III-es a riasztási fokozathoz 3,5-4 raj,
IV-es a riasztási fokozathoz 4,5-6 raj,
V-ös a riasztási fokozat, 6-nál több raj riasztása szükséges.[2]
Amennyiben különleges gépjármű kerül alkalmazásra a beavatkozáshoz, abban az esetben a riasztási fokozat mellék a „K” (kiemelt) jelző kerül.

1.2. A tűzoltás szervezete és vezetési elvei

A káreseti feladatvégrehajtáshoz elengedhetetlen személyi erőforrás szükséglet a beosztott tűzoltó, a beosztottakat vezető, a speciális eszközöket kezelő, gépjárművezető, és az események felszámolását figyelemmel kísérő, koordináló, de a tűzoltási szervezethez nem tartozó műveletirányító[20] állományból áll a kárfelszámolás operatív folyamatai esetében. A szervezeti egységek az 1+3 főből álló fél raj, amely önálló taktkai[21] feladatok elvégzésére már alkalmas, az 1+5 főből álló teljes raj, az 1+4 főből álló csökkentett raj, a szakasz, amely rajok, és fél rajok valamilyen feladatra létrehozott egysége[2] [3]. Fontos megemlíteni, hogy a veszélyhelyzeti beavatkozás nem engedélyezi az egy fő általi önálló feladat végrehajtást,

1.2. A tűzoltás szervezete és vezetési elvei

A káreseti feladatvégrehajtáshoz elengedhetetlen személyi erőforrás szükséglet a beosztott tűzoltó, a beosztottakat vezető, a speciális eszközöket kezelő, gépjárművezető, és az események felszámolását figyelemmel kísérő, koordináló, de a tűzoltási szervezethez nem tartozó műveletirányító[20] állományból áll a kárfelszámolás operatív folyamatai esetében. A szervezeti egységek az 1+3 főből álló fél raj, amely önálló taktkai feladatok elvégzésére már alkalmas, az 1+5 főből álló teljes raj, az 1+4 főből álló csökkentett raj, a szakasz, amely rajok, és fél rajok valamilyen feladatra létrehozott egysége[2] [3]. Fontos megemlíteni, hogy a veszélyhelyzeti beavatkozás nem engedélyezi az egy fő általi önálló feladat végrehajtást, aminek biztonsági okai vannak. A fél rajok vezetéséhez is már szervezeteszerűen megjelenik a rendszerben a tűzoltás vezetésére jogosult személy, aki jogszabályi felhatalmazás alapján dönthet alapvető állampolgári jogok korlátozásáról is a tűz eredményes eloltása, és a biztonság érdekében. Ezek a jellemző korlátozások, illetve jogok a veszélyeztetett terület lezárása, abba történő behatolás, valamint bontási tevékenység elvégzése, amennyiben az indokolt, hogy csak a kárhelyszínnel[22] kapcsolatos jogokat emlitsük. Joga van még egyéb közreműködő és társszervek (pl. gázsolgalaptató, áramszolgáltató szakemberei, rendőrség stb.) helyszínre rendeléséhez, de igénybe vehet a helyszínben található eseménykezeléshez hasznosnak ítélt állampolgári, vagy cégutilajdonban lévő gépet, eszközt, anyagot is, állampolgári segítséget, és karitatív szervezetek segítségét is kéni [2]. A legmeghatározóbb
szervezési intézkedése, hogy a szükséges erő, eszköz helyszínre rendelésére (riasztására) is joga van. Az első szervezési intézkedése, hogy a helyszínre rendelt, vagy már ott tartózkodó állományt a tűzoltási szervezetbe elhelyezzze. Ez a szervezet egy ideiglenset struktúra, és csak addig működik, addig a káreset felszámolása zajlik. A tűzoltási szervezet tekintetében parancsadási jogköre van, amely feljogosítja beosztások szervezésére, azokhoz köthető feladatok kiosztására, azok végrehajtásának ellenőrzésére. Amennyiben bonyolult, nagy kiterjedésű káresetet kell felszámolnia, a tűzoltás vezetését meg is oszthatja. [8]

Az állomány a meghatározott feladatokat a tűzoltás szervezetében létrehozott, és egyéb beosztások keresztül végzik el. Amennyiben feladatot kap a tűzoltó, a kiképzése szerint köteles azt a rendelkezésre álló technikai eszközök igénybevételével csapatan, összehangoltan szakszerűen végrehajtani, amelyhez a szerelési szabályzat garantálja a magyarországi mentő tűzvédelem összes szereplőjének, hogy mindannyian ugyanazon mozdulatsorok alkalmazásával hajtanak végre bizonyos szakfeladatokat. A főigazgató által kiadott szabályzatban, a tűzoltók által használt szakfelszerelések összehangolt alkalmazására határoznak meg szerelési mozzanatokat, fogásokat, amely a lehető leggyorsabb munkavégzést teszi lehetővé. Ez az egyik „KRESZ” szabály, amely szükséges a szakszerű munkahöz, és nem az egyetlen kapcsolódó szabályzó a katasztrófavédelem káreseti beavatkozásait szabályozó intézkedések, utasítások közül.

A résztvevőknek a tanult szerelési metódusok használatával a kiképzése szerinti saját védőeszköz szakszerű használata mellett kell a szaktudást igénylő feladatokat, és más egyéb számukra meghatározott tevékenységet végrehajtaniuk. Az optimális tűzoltói beavatkozás alapvető célkitűzéseként a legkisebb károkozásokat, a legkevesebb energiaráfordítással, legbiztonságosabban végrehajtott káreset felszámolást érthetjük [2]. Nem elhanyagolható szempont a munka gyorsasága, hiszen az értékmentés mellett nem ritkán életmentést is végre kell hajtania a rajoknak, amely erős időkorlátok között végezhető el eredményesen. Tehát amennyiben tűzoltás taktikáról beszélünk, akkor ezen irányelvek szerint végrehajtott cselekvések sorozatát értjük, amelynek lényege, hogy minden esetben az adott időpillanathoz igazított helyes döntést hozzuk meg, és feladatot hajtsuk végre.

A feladatszervezési elveknek minden esetben a legnagyobb sikert igényelő tevékenységet kell támogatniuk, ezáltal az eseménykezelés folyamatában azokat az aktív elemekeket kezeljük, amelynél kötelező a beavatkozás, és olyan megoldást választva, amelytől a legnagyobb eredményesség várható. Az erő, eszköz bevonása a tevékenységbe,

23 A BM OKF főigazgatója által kiadott intézkedés, amely a szakszerű tűzoltó technika alkalmazásához kapcsolódó személyi feladatokat rendeli hozzá
csoportosítása, és feladatokkal történő „felruházása” kizárólag a beazonosított, és felismert veszélyek mentén történhet. A legfontosabb vezérlő elv például a veszélyazonosítás fogalomkörében, a veszélyben lévő személyekről szerzett információ, az ehhez kapcsolódó erő igény, feladatok meghatározása. Az életmentés, amely gyakorlatilag felülről minden egyéb szabályt, és a tűzoltó akár károkozás mellett - esküjében foglaltaknak megfelelően-élete kockázatátásvával is végrehajtja [2]. Az életmentésen kívül is van azonosítási lehetőség a veszélykezelési folyamat aktivitását meghatározni, a kezelésére protokollokat kidolgozni, amelyeknek jelentős része paraméterekkel kifejezhető. A tűzvédelmi törvény tűzoltási és műszaki mentési általános feladatait meghatározó rendelete 24 pontos feladatvégzési elveket határo meg a tűzoltás szereplőinek, és ehhez biztosítja a szükséges mozgásteret is. A tűzoltás vezetőjén, és alárendeltjein keresztül csoportosítja a feladatokat, és a kapcsolódó általános szabályokat. Kiemelve a parancsnokot (tűzoltásvezető), és a beosztott tűzoltót egyértelműen látszik, hogy míg az egyik szereplőhöz (vezető) a feladatok felismerése, a legjobb alkalmazható eljárás kiválasztása, és annak szakszerű végrehajtásához köthető feladatkiosztás, addig a beosztottakhoz (beleértve más alárendelt vezetőt) annak végrehajtása kapcsolódik jellemzően. A feladatok végrehajtásához a beosztásokhoz kötődő függelmi viszonyok megfelelően több-kevesebb mozgástér kapcsolódik. A beosztott tűzoltó feladatköre szerint „a kapott feladatot a legnagyobb megfontoltsággal, körültkintéssel, a legveszélytelenebben módon, a biztonsági és munkavédelmi szabályok megtartásával a szükséges egyéni védőfelszerelések alkalmazásával elvégzi; magával viszi azokat a felszereléseket, amelyek a meghatározott feladatok végrehajtásához szükségesek, munkavégzés során védi saját és társai életét, testi épségét”25

Elvárt dolog, hogy a tűzoltó gyors, szakszerű, hatékony munkát végez, valamint minden váratlan helyzetre van egy gyors, alkalmazható válasza. Hogyan lehetséges, hogy ilyen magas elvárás alakult ki a társadalomban ezzel a szakmával kapcsolatban? A tűzoltó szakma empirikus szakma, ahol a korábban jól működő eljárások honosodtak meg, és nem tűrt meg olyan metódust, ami nem vezet eredményre. Tehát a bajba jutottak azzal szembesülnek rendszerint, hogy az érkező mentő egységek “tudják mit csinálnak”. Ez a szakszerűség természetesen a korábban kipróbált elemekre épül, és a technika fejlődésével, az eszközök modernizációjával vált egyre hatékonyabbá. A fejlesztési

24 39/2011.(XI.15) BM rendelet A tűzoltóság tűzoltási, és műszaki mentési tevékenységének általános szabályairól
25 39/2011. (XI.15.) BM rendelet A tűzoltási folyamatban közvetlenül résztvevők és a tűzoltással kapcsolatos tevékenységet végzők kötelességei
irányok, a jogalkotó szándékának megfelelően a biztonság garantálását szolgálják. Ennek feltételei egyrészt technikai, technológiai természetűek, másrészt szervezeti struktúrát érintenek, valamint szerves része ez utóbbinak a felkészülés, oktatás, kiképzés gondolatkörére.

A tűzoltó beavatkozások elemzése is erre épül, azaz képesek legyünk felismerni a hibáinkat, azokból következtetéseket levonni, és a későbbiekben új megoldási lehetőségeket kidolgozni. Szükségszerű a korábban működő eszközök, eljárások hatékonyságát vizsgálni, és kipróbálni a helyzetek megoldására még hatékonyabb eszközöket, eljárásokat, módszereket vagy új vezetési elveket. Ehhez kapcsolódóan az oktatással kapesolatos, mind elméleti, mind gyakorlati módszereinket is fejleszthetjük. Tehát folyamatosan vizsgálnunk kell az eszközeinket, és az eljárásainkat is. A szervezet működése, működtetése viszont a leginkább érzékeny pont, amelyet szükséges folyamatosan „finomhangolni”. Az optimalizálás, mert lényegében erről van szó, a dolgozat támáját tekintve a tűzoltói beavatkozás különböző szintjein keletkező feladatok végrehajtásáról, valamint azok célszerű szervezéséről szól. [8]

A tűzoltók igyeksznek egyszerűsíteni, és a lehető legkevesebb elemi mozdulatból a lényeget érintő hatást kicsikarni. A szükséges minimum, de azt gyorsan, vagy az elérhető maximum, de azt csak később között, a véleményem alapján az előbbi stratégiát részesítik előnyben. A racionális feladat-végrehajtás sok évszázados, vagy inkább évezredes tapasztalat alapján alakult ki a „kollektív tűzoltói tudatban”, és a szabályzókban. Egy tűzoltó, amennyiben rendelkezik 3 információval (pl.: mi ég, az helyileg hol van, hogy lehet megközelíteni) az elég az elsődleges feladatok meghatározásához. Ezek alapján már döntést fog hozni, és elkezdi a beavatkozás előkészítését, majd részletekbe menően igyekszik további információval felvételeznie magát a szakszerű végrehajtás érdekében. [2]

Egy „egysúlypontos káresetnél”, ahol lényegében egy konkrét területhez köthetők a felhasznált erők, eszközök „könnyen” lehetséges végig kíséri a feladatokat, de ahol komplex feladatrendszerek várható, területileg elkülönülő helyszínek, ez csak a feladatok kiszervezésével, azokat delegálva, megbízásos módszerrel lehetséges. Az ilyenkor átruházott feladat alapján „lecsorog” a végrehajtás egy vezetői szintet, és inkább koordináló szerep jut a kárhelyszín parancsnokának.

Talán senki nem gondolt bele abba, hogy egy komplexb káresetnél mekkora mennyiségű információ zúdul az irányító személyre, mindenesetre már vizsgálták azt az információmennyiséget, amellyel még képes megbírkózni az emberi agy. Körülbelül 6-8 közötti elemi információt képes feldolgozni az emberi agy egyszerre, és ebbe beletartoznak az információkkal végzett műveletek, tehát az elvonatkoztatás, halmazokba való
csoportosítás, egymásra hatások vizsgálata is.[7] A mentális, vagy kognitív térképnek ki kell fejlődnie, meg kell erősödni egy tüzoltóban, hogy biztonságosan, higgadtan tudjon döntéseket hozni. A dolgozat témáját tekintve, olyan gyakorlatban végrehajtható folyamatokat dolgoz fel, amely ennek a kognitív térképnek a kialakulását segíti.

Gyakorlati példákon keresztül lehet rávilágítani a kognitív térkép fejleszthetőségének a kérdéskörére. Egy lakóépületben keletkezett tüzesetnél a feladatok gördülékeny végrehajtása a képzettségre, a rutinra, és az összeszokottságra épül, valamint ezek koordinációjára, különös tekintettel az életmentéssel kapcsolatos épületátvizsgálat, és a dolgozat további részében feldolgozásra kerülő szerelési eljárásokat. Kipróbált, jól működő eljárások, valamint átélt sikeres helyzetek erősítik ezt a fejlettségi állapotot. A tűzoltásvezető által adott utasítás nem zárja ki az állomány kezdeményezőkészségét, amennyiben harmonizál az alapcél elérése érdekében hozott alapvető tűzoltásvezetői elképzeléssel. Ezek az önálló gondolatok, a mentális felkészültségünk a korábbi sikeresen végrehajtott legnagyobb előnyt ígérő fogásokból, eljárásokból állnak tehát.

A lényeget érintő folyamatokat, azaz a végrehajtható és kötelezően végrehajtandó feladatokat rangsorolni a legnagyobb kihívás ebben a feladatrendszerben, hiszen emberek döntenek emberek sorsáról, anyagi természetű értékek megtartásáról vagy feláldozásáról, amelyben lehetetlen minden kritériumnak megfelelő döntéseket hozni, de nem lehetetlen optimális döntést hozni a feltételek megkeresése után. Attól viszont, hogy megismerjük a változókat, nem biztos, hogy a legjobb megoldást fogjuk választani a lehetséges verziók közül. Egy problémának több (jó) megoldása van, azaz több variáció alkalmas arra, hogy kielégítsük az alapvető igényt, miszerint beavatkozva egy folyamatba azt pozitív irányba térítsük el. [8]

A károkat felszámolása egy igen dinamikus folyamat, amely közben a végrehajtók más nézőpontból látják az eseményeket, mint az öket személyesen vezetők, illetve a tevékenységet távolabbról irányítók, köszönhetően a szintükön megjelenő észlelési, információszerező folyamatnak.

Elsősorban az irányítás, vezetés témakörében szükségszerű alapvető különbséget tennünk a végrehajtók szempontjából. Az irányítás, mint egyfajta rendelkezés azt jelenti, hogy az irányító mintegy külső szemlélő, kívülről avatkozik be a folyamatokba. Nyilvánvaló, hogy egy tűzoltónak nem lehet úgy feladatot adni, hogy ne bizonyosodnának meg arról, hogy végrehajtható-e az elvárt tevékenység, tehát jelen kell lennünk a probléma beazonosításánál, és a lehetséges verziók közül a végrehajtható, legnagyobb sikert ígérő metódust kell kiválasztanunk, a körülmények figyelembevételével. A konkrét végrehajtás
már inkább személyes irányítást igényel, ahol a veszély testközelsége miatt szükségszerű egy közvetlen vezetést gyakorló vezető jelenléte.

A rendvédelmi szervek, és a fegyveres erők tekintetében a rendelkezés az utasítás, és a parancs útján valósul meg. Míg a parancs a szolgálati tevékenység, vagy feladat végrehajtására vonatkozó egyedi utasítás, tehát konkrét végrehajtható cselekvésre utal, addig az utasítás általános jellegű szóban, vagy szabályzatokban lefeketett előírásokat jelent, és megkérdőjelezésükre nincs lehetőség kivéve, ha törvénytelen cselekvésre szólít fel.\footnote{27}

Nem kerülheti el a tűzoltás egyszemélyi felelős vezetője, hogy a konkrét parancsai, és az általános utasításai között egyensúlyozzon, különösen a káresetek korai szakaszában. Jellemző a magyar tűzoltási taktikára, hogy tűzoltás esetén a vezető általában primer\footnote{27} információkra építi a taktikáját, tehát „mindenhol ott akar lenni”, különösen ott, ahol az esemény súlypontjai\footnote{28} vannak. A kárfelszámolás korai szakaszában jellemző még az irányítás, és a személyes vezetés keveredése, különösen több aktív folyamat esetében. [8]

1.3. Irányítás a tűzoltási szervezetben

Az irányítás olyan tevékenység, amely esetében az irányító, az irányított szervezeten kívülről avatkozik be a szervezet tevékenységébe, hogy az abban értelmezett folyamatokra hatást gyakoroljon. A tűzoltás vezetése kevesebb ilyen típusú lehetőséget biztosít, amennyiben a tűzoltásvezetőnek saját állományát is vezetnie kell operatív személyes vezetéssel. Az aktuális szabályzók szerint a vezetési törzs, és a törzskari vezetés tekinthető tisztán irányítási struktúrának. Az alapirányítás, és a csoportirányítás csak abban az esetben tekinthető irányításiaknak, és akkor sem teljes mértékben, amennyiben a megállapított súlypontoknál önállóan dolgozókhoz a személyes vezetés (a tűzoltásvezetőn kívül) biztosított.

Az irányítás egy magasabb szervezési tevékenység, mint a vezetés. Amennyiben vezetésnek nevezzük a káreset felszámolása közben a csapategységekhez leosztott feladatok koordinációját (mint belülrol érkező folyamatszabályozást), akkor a közvetlen felügyeletre bizott végrehajtó állományt — a munkája végzése közben — személyesen vezetjük.

Ez az elvi különbség meghatározó az eredményesség szempontjából, mert a stratégiai és a taktikai elemek egymásra épülése és hatékony korrekciója, nem azonos szintű feladat,

\footnote{2015. évi XLII. törvény a rendvédelmi feladatokat ellátó szervek hivatásos állományának szolgálati viszonyáról; 103. § (1) A hivatásos állomány tagja szolgálatteljesítése során köteles végrehajtani a szolgálati előjáró parancsát, a felettes rendelkezését, kivéve, ha azzal bűncselekményt követne el.}

\footnote{elsődleges, saját maga által megtapasztalt}

\footnote{a sikeres beavatkozás érdekében, meghatározott alapvető feladat(ok), mely önálló (elkülönülő) erőt, eszközt és irányítást igényel (Rácz Sándor-Nagy László)}
mint a tűzoltási, műszaki mentési tevékenység személyes vezetése [9]. Erre példaként felhozható, hogy közúti balesetnél egy sérültet kimenteni a roncesből személyes felügyelettel, vagy légzőkészülék használatával személyesen tűzoltást vezetni, és emellett több más egység munkáját összehangolni rádiókapcsolattal nem lehetséges egyforma eredményességgel [10]. Rendszerint ezt a komplex feladatkört a vezető megoldja, mert szervezeti szocializációja így történt. A feladatok torlódásánál, már ez egyre nehezebbé válik, és akkor még nem beszélünk az előzetes tervezésről, szakemberekkel való konzultációról, illetve lakosságvédelmi intézkedések szükségessége esetén az azzal kapcsolatos feladatokról, esetleg társfelügyelet felügyeletéről. Sok feladatot generáló beavatkozások során megalakítandó szervezeti egységek többnyire térben függetlenek egymástól, ezért a parancsnoki tevékenység lényegében irányítási feladattá válik. [8]

A tűzoltás szervezetében dolgozók tehát különböző feladatot látnak el, és különböző szintekre is tagozódnak. Az irányítási módok segítségével azokat a szakembereket kérhetik, amelyeken keresztül szerveződik a végrehajtás (2-6. ábra)

Alapirányítás

A jelenleg hatályos rendelet [2] alapján négy vezetési struktúrát különböztetünk meg, a káresetek felszámolásának irányítására, amelyeken keresztül létrejön a tűzoltás (feladatra létrehozott) szervezete.

Ezek a következők:

- alapirányítás,
- csoportirányítás,
- vezetési törzsirányítás,
- törzsirat vezetés,

A többnyire személyes vezetéssel végrehajtott káreset felszámolás az alapirányítás (2. sz. ábra) amely alatt a beosztott tűzoltói állományt közvetlenül vezeti a vezető. Ebben az esetben jellemzően az egyik raj tevékenységét közvetlenül felügyeli a tűzoltásvezető, míg a többit azok vezetőjén keresztül. Dolgozata során szakaszában már meg kívánom jeleníteni azt a feltételezésem, amely alapján az irányítás, és a személyes vezetés más természetű, és hátrányosan befolyásolja a tűzoltásvezetőt az objektív döntések meghozatalában. A súlyponti erőmegosztáshoz kapcsolódó alapelvem szerint a feladatokat végrehajtó állomány
közvetlen vezetője ne legyen a tűzoltás egyszemélyes felelős vezetője, amennyiben más irányítási feladatokkal együtt kell azt végeznie (3. számú ábra) [8]

A csoportirányítás

A 4. számú ábrán, már egyértelműen szétválasztott területileg elkülönülő feladat végrehajtásról van szó. Ebben az esetben a háttéparancsnoki feladatokat a létrehozott beosztásba behelyezett személynek átadja, aki ebben az esetben, a hierarchiában utána következik. A háttéparancsnok szerteágazó feladatkörét tekintve szintén vezetői munkakör, kötelessége többek között a folyamatos oltóanyag utánpótlást biztosítani, annak rendelkezésre állását — akár további eszközök bevonásával — megszervezni, felügyelni az üzemanyag, és technikai utánpótlást, figyelembe véve az eszközök teljesítőképességét, valamint amennyiben szükséges (törzstitiszt hiányában) a hírforgalom szervezéséről gondoskodni. Ezen kívül rendszerint gondoskodik a közművek kikapcsolásáról, ha szükséges, a társzervek fogadásáról irányításáról, további érkező erők elhelyezéséről. Háttéparancsnok beosztás létrehozása különösen indokolt például nagy oltóvíz igényű tűzeseteknél, mint raktár, és csarnoktűzek, valamint középhogás, és magas lakóépületek, vagy egyéb nagy erőket igénylő beavatkozások során. [8]

A tűzoltói tevékenységet szabályozó rendelet [2] is alapvetően rögzíti a beosztásokhoz kapcsolódó feladatkör, de a rendelet egyik fontos általános szabálya, hogy a felderítéssel kapcsolatos feladatot minden egyes, - a tűzoltás szervezetébe - beosztottnak kötelezően előírja. Mivel a tűzoltás vezetése különböző szinteken zajlik, gyakran egy káresetben belül, térben eltérő helyszíneken (metró, társasház, csarnok stb.) az információ továbbításának a megszervezése különösen fontos.

![Diagram](image.png)

2. ábra Alapirányítási vezetés (Készítette: Rácz Sándor a 6/2016 BM OKF utasítás alapján)
Látható, hogy míg az alapirányítás esetében a tűzoltásvezető egyedül irányítja az egységeket, addig a csoportirányításnál már egy teljes feladatesomagot ad át a háttérfőnöknek, amely végrehajtásáért az alárendelt számon kérhető. A háttérfőnök funkciója azért különleges, mert nem vesz részt sem az életmentésben, sem a tűz oltásában, viszont oltóanyag, és technikai ellátást szervez, és valósít meg a tűzoltás vezető által meghatározott feladatokon kívül.

Vezetési törzs, és törzskari vezetés

A vezetési törzs létrehozása során térben és feladattípusban is elválasztható problémákkal kell megbirkóznia a vezetőnek, ezért gondoskodik a helyettes vezetői pozíció létrehozásáról, akinek közel azonos a mozgástere a saját működési területén. Megjelenik egy magasabb
szervezési egység, a szakasz, amely több rajból áll, és azonos feladattípus hatékony végrehajtása érdekében önálló vezetést kap. (5. sz. ábra) [8]

5. ábra Vezetési törzs. [6/2016]

6. ábra Törzskari vezetés. [6/2016]

29 39/2011.(XI.15) BM rendelet A tűzoltóság tűzoltási, és műszaki mentési tevékenységének általános szabályairól 5. A tűzoltás vezetését végzők jogai és kötelezettségei
A szervezhető beosztásokhoz tartozó általános feladatok:

A **tűzoltásvezető-helyettes** a rendelet 20. § (1) értelmében a tűzoltásvezető által meghatározott területen tűzoltást szervező és vezető tűzoltó, aki közvetlen alárendeltje a tűzoltásvezetőnek, előljárója a működési területén a háttérparancsnoknak, a szakaszparancsnokoknak, valamint a tűzoltásvezető által meghatározott egyéb beosztásúaknak. A tűzoltásvezető-helyettes kötelessége a tűzoltásvezető által meghatározott területen a feladatok szervezése, végrehajtása, ahol jogai és kötelességei értelemszerűen megegyeznek a tűzoltásvezetőnél meghatározottakkal. [2]

A **háttérparancsnok** a rendelet 21. § (1) alapján a tűzoltásvezető által meghatározottak szerint az oltás anyagi-technikai, műszaki ellátottságát szervező, vezető tűzoltó, aki közvetlen alárendeltje a tűzoltásvezetőnek, vezetési törzs létesítése esetén - a meghatározottak szerint - alárendeltje a tűzoltásvezető-helyettesnek [2]

A **háttérparancsnok-helyettes** a rendelet a 22. § (1) alapján a háttérparancsnok által meghatározott működési területen az oltás anyagi-technikai, műszaki ellátottságát szervező, vezető tűzoltó, közvetlen alárendeltje a háttérparancsnoknak, működési területén előljárója a háttérparancsnok által kijelölt állománynak. A háttérparancsnok-helyettes kötelességei - működési területe vonatkozásában - megegyeznek a háttérparancsnokéval. [2]

A **törzstiszt** a rendelet 23. § (1) értelmében a tűzoltásvezető szervező, vezető tevékenységét segítő tűzoltó, aki tűzoltásvezető közvetlen alárendeltje. A törzstiszt a tűzoltásvezetőtől kapott utasítások végrehajtása során előljárója a riasztott és a tűzoltásban résztvevő tűzoltóknak. A törzstiszt kötelessége lényegében kapcsolattartási, feladatadási, hírforgalmazási, információ rögzítési feladatokban nyilvánul meg. [2]

A **szakaszparancsnok** a rendelet 24. § (1) alapján a tűzoltásvezető, tűzoltásvezető-helyettes által meghatározott területen a tűzoltás szervezését, vezetését végző tűzoltó, közvetlen alárendeltje a tűzoltásvezetőnek, tűzoltásvezető-helyettesnek, háttérparancsnoknak, háttérparancsnok-helyettesnek. A szakaszparancsnok előljárója működési területén, a hozzá rendelt személyi állománynak. A szakaszparancsnok kötelessége a kijelölt erőkkel, eszközökkel a számára meghatározott feladatokat végrehajtani, vagy végrehajtani.
A mentési csoport parancsnok a rendelet 25. § (1) alapján a tűzoltásvezető vagy tűzoltásvezető-helyettes által az élet, állat, tárgy mentési feladatok végrehajtására kijelölt tűzoltók parancsnoka, előljárója a mentési csoport tagjainak, akiket elsősorban önként jelentkezők közül kell kiválasztani. A mentési csoport parancsnok önkéntes jelentkezés hiányában a tűzoltásvezető vagy tűzoltásvezető-helyettes egyetértésével jogosult a csoport tagjainak kijelölésére. A mentési csoport parancsnok kötelessége a meghatározott sorrendben, módon és útvonalon a csoporttal az élet, állat, tárgy mentést végrehajtani, a csoport tagjai részére a szükséges személyi védőfelszerelések használatát szükség szerint elrendelni.[2]

A rajparancsnok a rendelet 26. § (1) értelmében az esemény helyszínén kijelölt, a hozzá beosztottakat irányító tűzoltó, alárendeltje a tűzoltásvezető, vagy vezetési törzs irányítási mód alkalmazása esetén a tűzoltásvezető által megjelölt szakaszparancsnoknak. A rajparancsnok kötelessége a működésére kijelölt területen:

„a) kapcsolatot tartani az általa vezetett raj tagjaival és a számára meghatározott feladatot a taktikai elveknek megfelelően végrehajtani,

b) személyesen irányítani az elrendelt bontási, megbontási munkálatokat,

c) indokolt esetben kezdeményezni beosztottai váltását,

d) jelenteni előljárójának a tűz alakulását, a tett intézkedéseit, a tűz keletkezési okával kapcsolatos értesüléseit, megállapításait, a parancsban meghatározott feladat végrehajtását,

e) bevonulás elrendelésekor - annak megkezdése előtt - ellenőrizni a létszámot és a felszerelések meglétét,

f) külön utasítás szerint megszervezni a helyszín biztosítását.”[30]

A biztonsági tiszt a rendelet 29. § (1) értelmében a tűzoltásvezető tevékenységét segítő tűzoltó, a tűzoltásvezető közvetlen alárendeltje, a tűzoltásvezetővel egyeztetett utasítások végrehajtása során előljárója a riasztott és a tűzoltásban részt vevő tűzoltóknak, és más szervezetek helyszínen tartózkodó tagjainak.

A biztonsági tiszt kötelessége:

„a) figyelemmel kísérni a beavatkozó állomány bevetési körülményeit,
b) ellenőrizni az állomány bevetésben eltöltött idejét, létszámát, váltását, - légzőkészülék használata esetén - levegő mennyiségüket,
c) meggyőződni a beavatkozás helyszínén történő elektromos leválasztás, gáz kiszakaszolás, technológiai vezeték lezárás végrehajtásáról, elvégezni az ezzel járó adminisztratív feladatot,
d) folyamatosan ellenőrizni, hogy a beavatkozásban résztvevők szakszerűen és hatékonyan használják egyéni védőfelszerelésüket,
e) veszélyes anyag szabadba jutásakor folyamatosan egyeztetni a veszélyes anyag beazonosítását végző szakemberrel, közösen javaslatot tenni a tűzoltásvezetőnek a biztonsági zóna határának meghatározására,
f) a tűzoltásvezetőnek jelezni, ha a tűzoltásvezető által megválasztott taktika véleménye szerint indokolatlanul nagy veszélyt jelent a beavatkozó állományra, valamint a mentendőkre."³¹

Az összekötő a tűzoltásvezető vagy tűzoltásvezető-helyettes utasításait, jelentéseit, visszajelzéseit továbbbíto tűzoltó, közvetlen előljárója az a parancsnok, akihez rendelték.

Az eligazító a parancsnok utasításai szerint meghatározott tájékoztatási feladatot ellátó tűzoltó, közvetlen előljárója az a parancsnok, akihez beosztották, és kötelessége az érkező szerek, felállítási helyét kijelölni, külső szervek tagjait, polgári személyeket eligazítani

1.4. A Katasztrófavédelmi Műveleti Szolgálat szerepe

A tűzoltás vezetésére jogosultak munkájának a támogatására létrehozott Katasztrófavédelmi Műveleti Szolgálat³² (KMSZ) szintén a szervezési, és vezetési feladatok átvételével segítheti a kárfelszámolást. A KMSZ tapasztalt, a tűzoltás vezetésében rutinnal rendelkező, és arra feljogosított tagjai átvehetik az irányítást, de segíthetik is az addig helytálló parancsnok munkáját, meghagya őt a kárhelyszínen létrehozott szervezet vezetőjének. [11]. Mivel saját végrehajtó állománnyal nem rendelkezik, ezért az irányítási szabadsága adott. A KMSZ riasztása káresetekhez különböző esetekben lehetséges.

³¹ 39/2011.(XI.15) BM rendelet A tűzoltóság tűzoltási, és műszaki mentési tevékenységének általános szabályairól 5. A tűzoltás vezetését végzők jogai és kötelezettségei 29. § (1)
³² A Katasztrófavédelem területi (megyei), és fővárosi szervezeti szintjéhez tartozó képzett, gyakorlott tűzoltásvezetésre jogosultakkból álló személyek, akiknek joguk átvenni a tűzoltás vezetését a káreset helyszínén
Belső szakmai szabályzó határozza meg azokat az eseteket, amelyek indokolják az igénybevételt.

A KMSZ riasztására az alábbi esetekben kerül sor:

a) „minden II-es vagy annál magasabb riasztási fokozat elrendelésekor;

b) ha a kárhelyzinen tűzoltó súlyosan, életveszélyesen megsérült, elhunyit;

c) amennyiben a megyei/fővárosi fő- és műveletirányító ügyelet a visszajelzések alapján úgy dönt;

d) amennyiben a kárhelyzinen lévő tűzoltásvezető konzultációra kéri összetett, bonyolult eseteknél (műszaki mentés, daruzás, magasból-, mélyből mentés, jákidőlés, stb.);

e) amennyiben a KMSZ-en málhatott speciális felszerelésekre a helyszínen szükség van;

f) tűzoltó gépjármű balesetéhez, ha a baleset személyi sérüléssel járt;

g) az igazgató vagy igazgatóhelyettes utasítására;

h) a tűzoltósági főfelügyelő utasítására;

i) a KMSZ vezető döntése alapján, amennyiben az adott káreset felszámolását ellenőrizni kívánja vagy a visszajelzések alapján indokoltnak tartja és a megyei fő- és műveletirányítási ügyelettel a vonulás megkezdése előtt konzultált.”

Mindamellett – megyéenként eltérően – a helyszínre érkezésük akár 1-1,5 órára, vagy többet is igénybe vehet a közlekedés függvényében. Magyarországon megyéenként (főváros) csak egy ilyen szervezet van, tehát akár két párhuzamos „komolyabb” esetnél már ez egyik esemény biztosan ilyen típusú támogatás nélkül marad.

<table>
<thead>
<tr>
<th>Budapest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1. riasztott gépjárműfeeskendő</td>
</tr>
<tr>
<td>A szer riasztása</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. riasztott gépjárműfeeskendő</td>
</tr>
<tr>
<td>A szer riasztása</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. riasztott gépjárműfeeskendő</td>
</tr>
<tr>
<td>A szer riasztása</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
</tr>
</tbody>
</table>

1.számú táblázat Fővárosi KMSZ és elsőként riasztott gépjárműfeeskendők érkezése a káresettekhez (panelűz)

(Készítette: Rácz Sándor KAP online adatszolgáltató rendszer 2017.-es adatai alapján 2017.)

33 4/2017 BM OKF Főigazgatói Intézkedés 1. számú melléklet V. pont A KMSZ alkalmazása
Megyei KMSZ

<table>
<thead>
<tr>
<th>1. riasztott gépjárműfescsendő</th>
<th>KMSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szer riasztása</td>
<td>01:09</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
<td>01:11</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
<td>01:15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. riasztott gépjárműfescsendő</th>
<th>KMSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szer riasztása</td>
<td>16:22</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
<td>16:24</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
<td>16:31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. riasztott gépjárműfescsendő</th>
<th>KMSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szer riasztása</td>
<td>15:19</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
<td>15:22</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
<td>15:33</td>
</tr>
</tbody>
</table>

2.számú táblázat Megyei KMSZ és elsőként riasztott gépjárműfescsendő kiérkezése a káresetekhez (panelüzt)

(Készítette: Rácz Sándor KAP online adatszolgáltató rendszer 2017.-es adatai alapján)

Megvizsgáltam továbbá három V.-ös riasztási fokozatú 1000m²-nél nagyobb alapterületű létesítményben keletkezett tűzhoz riasztott szerek vonulási adatait, amelyeknél szintén látható volt a vonulási idő különbség (3. számú táblázat).
Pest megye

<table>
<thead>
<tr>
<th>1. riasztott gépjárműfeckendő</th>
<th>KMSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szer riasztása</td>
<td>09:19 A szer riasztása</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
<td>09:22 Vonulás megkezd.</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
<td>09:31 Kiérk.és/visszaford.</td>
</tr>
</tbody>
</table>

Nagykőrösség

<table>
<thead>
<tr>
<th>1. riasztott gépjárműfeckendő</th>
<th>KMSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szer riasztása</td>
<td>12:45 A szer riasztása</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
<td>12:46 Vonulás megkezd.</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
<td>12:53 Kiérk.és/visszaford.</td>
</tr>
</tbody>
</table>

Budapest

<table>
<thead>
<tr>
<th>1. riasztott gépjárműfeckendő</th>
<th>KMSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szer riasztása</td>
<td>15:58 A szer riasztása</td>
</tr>
<tr>
<td>Vonulás megkezd.</td>
<td>16:01 Vonulás megkezd.</td>
</tr>
<tr>
<td>Kiérk.és/visszaford.</td>
<td>16:07 Kiérk.és/visszaford.</td>
</tr>
</tbody>
</table>

A vizsgált események összetett, jellemzően nagy erőket megmozgató káresetek voltak, amelyek esetében a KMSZ jelenléte, a szabályozó értelmében miatt szükséges volt, mindamellett a különálló irányítás megvalósítása az események korai időszakában nem minden esetben valósulhattak meg a vonulási idő nagysága miatt.

A Németországban meghonosodott modell esetében minden hivatásos tűzoltóságon rendelkezésre áll az a szervezeti egység, amely biztosítja a beavatkozó tűzoltók számára az elkülönülő vezetést. A gépjármű, amellyel a helyszínre érkezik az (ELW, bevetés irányító autó) egy gépjárművezetővel, egy parancsnokkal (Zugführer), és a feladathoz szükséges egyéni védőeszközökkel, informatikai, és rádiókommunikációs rendszerrel van felszerelve. A 2. ábrán látható GF/ZF (Gruppenführer, Zugführer) jelölés azt jelenti, hogy mind rajparancsnoki (Gruppenführer), mind pedig elkülönülő, saját állomány nélküli tűzoltásvezetőként (Zugführer - ELW parancsnok) is funkcionálhat a személy, de a kép szerinti helyzetben saját létszám nélkül irányítja a beavatkozást, mert az ábrán egy lakóház tűzéhez riasztott alaperőt látunk, ahol indokolt a komplex feladatok miatti elkülönülő vezetés.

3. számú táblázat V.-ös riasztási fokozatú 1000m²-nél nagyobb alapterületű létesítményben keletkezett tűzhöz riasztott szerek vonulási adatai
(Készítette: Rácz Sándor KAP online adatszolgáltató rendszer 2017.-es adatai alapján 2017.)
A hivatásos tűzoltó parancsnokságokon készenlétben tartott végrehajtói állománytól független tűzoltásvezetők jelenléte újszerű megközelítése lehetne annak a szervezési módszernél, amely annak a törekvésnek engedne teret, hogy minden olyan tűzoltói beavatkozás, amely több súlypontos, rendelkezzen arra alkalmas vezetővel, aki személyes vezetéssel nincs terhelve.

Feltételezésem alapján egynél több beazonosított súlypont kezelését igénylő káresethet szükségszerűen szervezni kell megfelelő létszámmal személyes vezetésre alkalmas tűzoltás vezetésére jogosult személyt, aki a tűzoltásvezető közvetlen irányítása által vezeti a végrehajtói állományt. Ez a szervezés a műveletirányítás szintjén történjen meg, aminek a korai erő, eszköz meghatározásában döntő szerepe van.

Javaslatként felmerülhetne, olyan beosztás létrehozása, amely a Hivatásos Tűzoltó-parancsnokságokon a beavatkozások vezetésére lenne rendszerezve, olyan gépjárművel, amely alkalmas információfeldolgozásra, vezetési tevékenység végzésére. Lényegében a KMSZ-ek megsokszorozásáról beszélhetünk, amely nyilvánvalóan erőforrás igényes. Ellenben alternatíva lehet hosszú távon azoknak a rutinos tűzoltóknak, akik koruk alapján, fizikailag már kevésbé terhelhetők, viszont nagy gyakorlati tapasztalat halmozódott fel náluk. Ezek a személyek részt vennének a tűzvizsgálati feladatokban megfelelő átképzéssel, vagy akár a helyi felkészítéssel kapcsolatos előkészítő, koordináló feladatokat is elvégezhetnének a hivatásos tűzoltó-parancsnokságokon.[8]

Nincs szabályzókban rögzítve, de Magyarországon a tűzoltói beavatkozások fő súlypontjánál a tűzoltás vezetője az általa legfontosabb feladatot végrehajtott egység vezetője is egyben. Ez azonban, különösen komplex eseménykezelésnél nem lehetséges, mert a stratégiai, és taktikai elgondolások kivitelezése mellett nem lehetséges az operatív, részletekbe menő személyes vezetést végezni.
Az előzőekben felvázoltak alapján látható, hogy különböző szinteken kell döntést hozni a vezetőnek, azonban az is kitűnik, hogy ezek más és más természetűek. Míg az oltás folyamatában — egy súlyponttal rendelkező káresetnél, személyes vezetés mellett — a parancs kiadása után (pl.: tetőtűz oltása, az oltóanyag, a sugárkép34, és az adagolási intenzitás35 meghatározásával) követlen felügyeletet gyakorol egy konkrét oltási feladat során, addig több súlypont esetén már más egységeket érintő tervezési, szervezési, irányítási feladatai vannak. Azonban a személyes vezetés mindeneképpen megjelenik a tűzoltásvezetőnél, hiszen más egységek parancsnokait is egyértelműen, leginkább élő szóban vagy rádión kell utasítania egy beavatkozást igénylő feladat elvégzésére.

A meghonosodott eljárási rend szerint a tűzoltásvezető (amíg nem érkezik a helyszínre magasabb beosztású vezető vagy a Katasztrófavédelmi Műveleti Szolgálat tűzoltásvezetésre jogosult állománya) egyrészt kénytelen vezetni a saját állományát, másrészt a további egységeket is irányítani vezetőjük útján, különösen a beavatkozások korai, annak dinamikusan változó, aktív szakaszaiban, ahol rendszerint minden erőt, eszközt be kell vetni az eredményesség érdekében.

Ez egy kritikus szakasz a tűzoltás szervezetében és annak vezetésében, mert rendkívül sok információ terheli a felelős vezetőt. Többek között a tűzoltást és műszaki mentést szabályozó rendelet és a belső szabályzónak megfelelően a lehető legteljesebb felderítést végre kell hajtania, amelyből a későbbiekben meghatározhatja a szükséges feladatcsoportokat és a hozzá szükséges létszámot. [2], [3]

A megállapításom szerint szükségszerű a tűzoltás vezetőjének a válláról minden olyan feladatot levenni, amely belekereskedéшенé őt egy személyes vezetési feladatkörbe. A személyes vezetés és az irányítás közötti feladatkülönbség miatt vertikális ugrásokat kell végrehajtania a tűzoltásvezetőnek, fokozva a hibázás lehetőségét különösen az információ késedelmes áramerővel. [8]

1.5. Alkalmazott eljárások

A tűz oltásán nem csak a helyszíni erő-eszköz helyes irányítási módban szerinti alkalmazását, hanem az előre kidolgozott protokollok, és a főként gyakorlati-tapasztalati úton megszerzett tudás egymásra épült rendszerét értjük, amelyek közül a szabályok

34 tűzoltó szakfélszerelés, a sugár alatt kijuttatott vízszugár formája (pl.: köd, szórt, kötött) (szerző)
35 időegységre vonatkoztatott vízmennyiség liter/percben meghatározva (szerző)
megkerülhetetlen, kötött kereteket adnak, a tapasztalattal kialakult kreatív szemlélet szabadságot ad az alkalmazott taktikai elemek megválasztásakor.

A tűzoltás-taktikai, és műszaki mentési szabályzat (TMMSZ) felosztja a tüzeseti, és a műszaki mentési eseménykezeléseket, és ezekhez tűzoltási, vagy műszaki mentési protokollokat határoz meg, amelyeket alkalmazott tűzoltásnak, vagy alkalmazott műszaki mentésnek hív a szakma [3][8]

A nevesített alkalmazott tüzeseti beavatkozások a következők:

- Talajszint alatti építmények, helyiségek, közművek, közműalagutak tüzeinek oltása
- Középmagas és magas épületek tüzeinek oltása
- Csarnok jellegű építmények tüzeinek oltása
- Büntetés-végrehajtási intézetek tüzeinek oltása
- Villamos hálózatok, berendezések tüzeinek oltása
- Tűzoltás kisfeszültségű berendezéseken
- Tűzoltás közép- és nagyfeszültségű berendezéseken
- Napelemes villamosenergia-termelő berendezések és környezetük tüzeinek oltása
- Közlekedési eszközökben keletkező tüzek beavatkozási szabályai (beleértve a közúti járművek, a kötöttpályás járművek, a hibrid járművek, légijárművek, hajótűzek oltása)
- Gázt szállító járművek, gázvezetékek, gáztartályok és gázpalackok tüzeinek oltása
- Gázt szállító vezetékek tüzeinek oltása
- Gázt tároló tartályok gázömléseinek elhárítása, tüzeinek oltása
- Gázpalackok tüzeinek oltása
- Közúti és vasúti gázszállítmányok sérülése, tüzeinek oltása
- Éghető folyadékok tároló tartályok és felfogó tereik tüzeinek oltása
- Olaj- és gázkutak tüzeinek oltása
- Erdők és tőzegterületek tüzeinek oltása
- Tűzoltás veszélyes anyag jelenlétében
- Sugárveszélyes területen keletkezett tüzek oltása
- Nukleáris létesítmények, atomerőművek, kutatóreaktorok, kiégett nukleáris fűtőelemek átmeneti tárolóinak beavatkozással kapcsolatos követelményei [3].

Alkalmazott műszaki mentések:

- Beavatkozás építményekben bekövetkezett károk elhárításánál
- Beavatkozás közművekben, csatornarendszerekben (közműalagutakban)
- bekövetkezett baleseteknél
- Közlekedési baleseteknél történő beavatkozás szabályai
- Beavatkozás szabályai természeti csapásoknál
- Beavatkozás veszélyes anyagok jelenlétében
- Beavatkozás sugárveszélyes anyagok jelenlétében
- Beavatkozás gázvezeték sérülése esetén
- Életmentés szabályai

Ezek az eljárásrendek nem alkalmazhatók egy koordináló személy jelenléte nélkül, hiszen szükséges az eseménykezelésnél egy olyan szemléletű vezető aki képes az azonosított veszélyeztető tényezők felismerésére, osztályozására, azok rangsorolására, valamint a végrehajtással kapcsolatos célirányos mozdulatszintű instrukciók meghatározására.

A beavatkozásokhoz kidolgozott eljárásrendek valamilyen területen, objektumban, technológiában, közlekedési eszközben, vagy annak környezetében kialakult káresetekhez írnak útmutatót az eseménykezelés teljes idejére, általános feladatok, vagy különleges intézkedések tekintetében. Amennyiben áttekintjük a felsorolt alkalmazott tűzoltási, és műszaki mentési módokat, valamint az abban foglalt feladatrendszert már elsőre feltűnhet, hogy nyilvánvalóan ezeknek a tűzoltói beavatkozások a halmazaival fogunk találkozni. Egy lakóházban találkozhatunk elektromos energiával, gázpalackkal, egyéb veszélyes anyaggal is, valamint a beavatkozás egy része történhet a talajszint alatt is, de ezen kívül számos kombinációját be tudnánk azonosítani az alkalmazott tűzoltási módoknak.

Információk megosztása

Már az alapirányítással működő vezetési forma során is fontos, hogy minden információ megfelelő időben, és formában eljusson a tűzoltásvezetőhöz. Az információk értékelése és taktikai elképzelések megválasztása komoly nehézségekbe ütközik, amennyiben a vezető egy teljesen más típusú feladat végrehajtását végzi. A tűzoltás szervezetének megalakulása, (amely a helyszínre érkezéskor az első tűzoltás vezetésére jogosult helyzetértékelésével, és visszajelzésével kezdődik a műveletirányítás felé) megkívánna, hogy a vezetést olyan ember végezze, akinek nincs személyes vezetői feladata a káreset alatt. A tűzoltási szervezet megalakítása, során — akár alapirányítás esetében — már szerepet, pontosabban vezetői szintet kell váltania, amelyhez más típusú tevékenységek tartoznak. A tűzoltásvezető visszajelzési kötelezettsége szintén nagyon erős kényszer, hiszen a lényeget érintő részletekről pontos információval kell szolgálnia a műveletirányítás felé a rendelet alapján.
Ezek a részletek fontos információval bírnak, mert ezekből lehet következtetni az események alakulására, esetleges veszélyeztetésre.

Általános szabályként felderítéskor intézkedni kell:

1. a teljes felderítés megvalósítására
2. a végrehajtásra szánt egységek feladatainak lehatárolására
3. feladatok folytonossága szempontjából, az időfüggés vizsgálatával a tűzoltó állomány igénybevételére

Szükséges jelezni a kiérkezés tényét, a felderítés megkezdését, amennyiben tűzeset van, akkor a tűzeset helyét, kiterjedésének mértékét, valamint, hogy mi ég, mit veszélyeztet. Elsődleges fontosságú még az esemény riasztási fokozatának minősítése, a társ- és egyéb szervek értesítése, kirendelésük szükségessége. Meg kell határozni, és jelentenie a beavatkozás módját, az irányítási módot az alapirányítás kivételével, valamint a további visszajelzések során a tűz alakulását, a tűz körüllhatárolását, a lánggal valóégés megszüntetését, a tűz eloltsását, az utómunkálatok megkezdését, majd annak a befejezését, a bevonulás megkezdését, társ- és közreműködő szervek helyszínre érkezését, sérültek, elhunytak számát, továbbá az egyéb rendkívüli eseményeket.

Eseményszakasza a riasztás szempontjából

Hogy milyen, és mekkora mennyiségű erőt, és eszközöt riasztunk egy káresethez, az egy úgynevezett faábra mátrixból kerül meghatározásra, amely a műveletirányítás döntéstámogatására bevezetett Pajzs rendszer egyik alapadatbázisa. A katasztrófavédelem riasztási rendszerében a műveletirányítók folyamatos informatikai fejlesztések mellett, illetve azok környezetében végzik tevékenységüket, annak érdekében, hogy a tűzoltói beavatkozásokhoz szükséges erőt, eszközöt, felszerelést, végrehajtő tűzoltói állományt elindítsanak a baj forrásához [13]. Ezen túl rádiós kapcsolattal az esemény felszámolásában is tevékenyen részt vesznek, többnyire tánogató szereppel. Közvetlen irányítási jogkörük nincs a helyszínen tartózkodók irányába, de a káreset felszámolásának alakulását figyelemmel kísérik, valamint dönhetnek a rendelkezésre álló információk alapján további tűzoltó erők riasztásáról. Bizonyos technikai igények esetén döntési

37/2016 BM OKF Főigazgatói intézkedés 1. sz. függelék
38 Katasztrófavédelem műveletirányítása által használt riasztási folyamatot segítő szoftveres alkalmazás

42
kompetenciájukhoz tartozik a legmegfelelőbb tűzoltó technika kiválasztása, távolsági elérhetőség, és képesség függvényében, amelyhez nyilvánvalóan szakmai ismeretekkel is kell rendelkezniük.

Az időben riasztott segítség függ a jelzést értékelő, majd a riasztást kiadó személy képzettségétől, felkészültségétől, a támogató informatikai rendszer, rendelkezésre állásától, valamint a tűzoltó parancsnokságokon, és katasztrófavédelmi örsökön található személyi állomány, és technikai feltételek rendszerben tartásától.

A tűzoltók elindulásáig eltelt időt tehát tudjuk vizsgálni a hatékonyság szempontjából. A káresetek\(^{39}\) bejelentőitől kapott információ határozza meg leginkább az alaperőt, amelyet útba indítunk a kárfelszámolás céljából. Törekedni kell a beavatkozás szempontjából fontos adatok megszerzésére, amely a veszély nagyságát, és ezáltal a szükséges erőt is meghatározhatja. Egy raktártűzet setében nem mindegy hogy 500 m\(^2\), vagy 2500m\(^2\) a terület, mert egyrésztt nagyobb oltóanyag mennyiséget, másrészt más tűzoltási módozatot igényel a hozzá szükséges egyéb különleges oltógépjárművekkel, és tűzoltó szakfelszerelésekkel. Társasház tűzeseténél szintén fontos információ az, hogy melyik szinten van a tűz, hány szintes az épület, a terjedési lehetőségek, a lakók kiszolgáltatottsága füsttel telítődött lépcsőház esetén, a magasból mentő\(^{40}\) gépjárművek alkalmazásának lehetőségei, vagy a beépített oltóberendezések működőképessége. A riasztást kiadó személy, a rendszer felépítéséből adódnak egy adatbázisra támaszkodhat, ahol az események jellegéhez már kalkulált erők vannak rögzítve, amelyeket neki csak jóvá kell hagynia, amennyiben sikerült a beazonosítás. A káresetek beazonosítása, tüzeseti, és műszaki mentési faábrán\(^{41}\) keresztül történik, ahol az esemény jellemzői alapján, valamint a helyszín, terület rendeltetése alapján került rögzítésre több száz lehetséges esetvariáció, amiből az aktuális eseményhez leginkább megfeleltethetőt kell kiválasztani. Amennyiben korrekcióra van szükség, ezt a kezelő megteheti, amennyiben felismeri azokat a folyamatokat, amelyek hatása miatt szükséges az eltérés.

A faábrából történő kiválasztási eljárásnak alapvetően nem a pontos erő kialakítása, hanem a minimálisan szükséges eszközmenyiség gyors meghatározása a célja, amely egy keretet ad, és amellyel a káreset felszámolása már megkezdhető. A folyamatot felügyelő személynek számos esetben szükséges is eltérnie a szoftverben rögzített adatoktól. A

\(^{39}\) A tűzoltás, és a műszaki mentés gyűjtőfogalma (a szerző 1996.évi XXXI. tv. alapján)
\(^{40}\) Létrás, vagy emelőkosaras tűzoltó gépjárművek, amelyek mind a mentésben, mind az oltásban fontos feladaton látnak el (szerző)
\(^{41}\) a katasztrófavédelem mentő tűzvédelméhez használt adatbázis, amely alaperőket, és eszközöket rendel hozzá típusos eseményekhez (szerző)
nagyszámú rögzített esettípus véleményem szerint bizonyos esetekben inkább csökkenti az erőszükséglét meghatározásának a pontosságát, hiszen az alapeseteken túl további, akár nagyságrendi eltérést okozó körülmények is jelentkezhetnek, amelyeket csak emberi közműködéssel lehet korrigálni.

A veszélyeztetés mértékét meg kell határozní, hiszen értékes időből veszítünk, ha nem dönthünk legalább egy – az eset jellegéhez igazított – alaperő szükséglét mellett, amellyel vélhetően eredményesen meg lehet kezdeni az eset felszámolást, ami szerencsésebb esetben minimális korrekcióval, vagy anélkül is elegendő lehet a végleges kárfelszámoláshoz. Megállapításom alapján, a faábra szerinti esemény szerinti erő meghatározásnak kapcsolódnia, illetve kiegészülne kell, egy komplexebb súlypont alapú erő meghatározással, amely konkrét feladathoz, vagy konkrét mérhető területhez, esetleg valamilyen paraméter által jellemzett folyamathoz rendel hozzá létszámot, technikát. A dolgozatom harmadik fejezetében néhány komplex beavatkozás feladathoz vagy konkrét mérhető területhez, esetleg valamilyen paraméter analízisével kérünk létszámot, technikát, amelyeket a következő lépésekhez hozzá lehet korrigálni.

Az Egységes Segélyhívó Rendszer kialakítása Magyarországon

Az Egységes Segélyhívó Rendszer (ESR) létrehozásával, Magyarország területén, Miskolcon, és Szombathelyen kerültek kialakításra hívásfogadó központok, ahol a 112-es segélyhívó számra érkező jelentéseket, az ott dolgozó operátorok rögzítik, majd továbbítják a Katasztrófavédelem, a Rendőrség, és a Mentőszolgálat riasztási rendszerét kezelő személyei felé. Mindhárom szervezet a saját rendszerét használva teszi meg a következő lépésekhez, immár a feladathoz szükséges, — ahhoz megfelelő képességgel rendelkező — egységeket indíti útba az eseményhez.

Az említett szervezetek bekapcsolása az ESR-be 2017-re már megtörtént, de különböző ütemben. A rendvédelemmel, és a mentéssel kapcsolatos tevékenységek egyrészt az esetszám miatt, másrészt a feladat időfüggése miatt nem hasonlíthatók össze. A katasztrófavédelem központjai egységei által végrehajtott feladatok időkorlátjai, inkább a mentőszolgálat feladatai közben jelentkező időkorlátokhoz hasonlíthatók, mert az esetleges késői beavatkozás — akár csak néhány percében mérhető — visszafordíthatatlan következményekkel járhatnak.

A Rendőrség tevékenységéhez is kapcsolódik számos olyan intézkedési kényszer, ahol hasonló időveszteség szintén komoly következményekhez vezethet, de a rend védelméhez köthető feladatok, többnyire más időintervallumot igényelnek, mint az élet védelmében
meghatározott eljárások akár a mentőszolgálat, akár a tűzoltóság tekintetében. A Katasztrófavédelem által végrehajtott tűzoltói beavatkozások éves szinten 60.000 felett vannak (2018. 65.000 szerző. KAP Online42 rendszer alapján), amelyben a tűzoltás, és a műszaki mentés is benne van. A jelzések száma viszont több, mert téves állampolgári bejelentések is befutnak a rendszerbe, amelyek akár rosszindulatú, megtévesztő jelzések is lehetnek, továbbá tűzfelhők téves jelzéseinek, és egy eseményhez kapcsolódó több bejelentés is emelheti ezeknek a számát. A korábbi jelzési rendszer szerint a tűzoltósági segélyhívó számra (105) érkezett hívások közvetlenül az ország megyéiben, és a fővárosban létesített tevékenységirányító központokba (korábban Budapesten Hírközpont, a szerző) futottak be ahol a jelzésből kinyerhető információt a riasztást kiadó személy értékelt, és hozott döntést a szükséges erő tekintetében.

Napjainkban az a hívásfogadó központokban dolgozó operátor által rögzített információ kerül informatikai rendszeren keresztül a katasztrófavédelem műveletirányítóhoz, ahol a már említettek szerint történik az esemény beazonosítása, értékelése, és a szükséges erő riasztása. A kommunikáció folyamatos, a szervek között, valamint a hívásfogadó operátor között, és nem ritkán a jelző között is. A korábbi modell — miszerint a végrehajtó szervezet szakképzett tagja élő szóban tudott kommunikálni a bejelentőkkel — és a mostani rendszer közötti különbség elsősorban a szervezeti kultúrát, és szabályzókat ismerő, a tűzoltói beavatkozások folyamatait értő, ott nem ritkán évtizedeket eltöltő műveletirányító, és a betanított operátor közötti tudásszintjében, mérhető, amely a gyors helyzetfelismerést teszi lehetővé. A tudás szintje alatt nem csak a tanulható ismeretek mennyiségét lehet érteni, hanem az információk szintetizálását, és hogy abból a leginkább alkalmazható eljárást milyen gyorsan tudjuk életbe léptetni. A korábbi modellnek, azon túl, hogy a bejelentő közvetlenül azzal a szervezettel vette fel a kapcsolatot a nemzeti segélyhívó hívószámokon (104,105,107) amelytől a segítséget várta, volt egy másik előnye, miszerint a mobiltelefon hívások, és a vonalas készülékkről indított hívások a területileg legközelebbi szervezethez futottak be, segítve ezzel a könnyebb helyszínazonosítást. A kezdeti nehézségek után a riasztás kiadásának folyama hatékonyabb lett, a rendszer optimalizálása napjainkban is folyik. [8]

42 A Katasztrófavédelem által használt adatbázis, amelyben a tűzoltó beavatkozásokkal kapcsolatos információk elérhetőek, amelyeket a végrehajtást végzők rögzítettek az eseménnyel kapcsolatban
1.6. Részkövetkeztetések

Az alaptevékenységként meghatározott tűzoltás, és műszaki mentés során olyan eseményeket kell kontroll alatt tartani, valamint elhárítani, amely kéros hatást fejt ki a környezetre. A tűzoltási szervezet szakszerű felépítése, és működtetése csak akkor lehetséges, amennyiben beazonosítjuk azokat a káreseti aktív folyamatokat, és az ehhez szükséges erőigényt, amelyek egyben a káresemény súlypontjai is. Feltételezésem szerint egy veszélyhelyzeti folyamat aktívnak tekinthető, amennyiben a környezetre gyakorolt negatív hatása – beavatkozás nélkül – a vizsgálat pontjában még mérhető emelkedést mutat. Az önálló tűzoltói erőt, eszközt, és irányítást igénylő folyamatok definíciójaként a súlypont fogalmi meghatározást tartom fontosnak bevezetni, amely alapja lehet a későbbi szervezési fejlesztési irányoknak.

Az alapvető erőmeghatározó jellegük miatt a későbbiekben fő folyamatszabályozóként tekintek ezekre az elemekre. A súlyponti erőmeghatározás szempontjából két fontos szervezési elvet állapítok meg, amely befolyásolja a beavatkozások sikerességét. Egyrésztől, — az elkülönülő vezetés érdekében — az önálló erőt, eszközt, és irányítást igénylő káresetekhez különálló tűzoltásvezető jelenlétét tervezni, másrészt a súlyponti helyzetek, és jellemzőik figyelembe vételével a káresetek felszámolásához szükséges erőket ezen elvek mentén meghatározni. Dolgozatom ezen szakaszában már meg kívánom jeleníteni azt a feltételezésemet, amely alapján az irányítás, a vezetés, és a személyes vezetés más természetű, és hátrányosan befolyásolja a tűzoltásvezetőt az objektív döntések meghozatalában. A súlyponti erőmegosztáshoz kapcsolódó alapelvem szerint a feladatokat végrehajtó állomány közvetlen vezetője ne legyen a tűzoltás egyszerűséges felelős vezetője, amennyiben más irányítási feladatokkal együtt kell azt végeznie. A meghonosodott eljárási rend szerint a tűzoltásvezető (amíg nem érkezik a helyszínre magasabb beosztási vezető vagy a Katasztrófavédelmi Műveleti Szolgálat tűzoltásvezetésre jogosult állománya) egyrészt kénytelen vezetni a saját állományát, másrészt a további egységeket is irányítani vezetőjük útján, különösen a beavatkozások korai, annak dinamikusan változó, aktív szakaszaiban, ahol rendszerint minden erőt, eszközt be kell vetni az eredményesség érdekében.

Az azonnali elkülönülő vezetés kialakításának a gondolata nem új, különösen a korai időben beazonosított, komplex feladatok végrehajtását igénylő tűzoltói beavatkozásnál, azonban az alacsonyabb szervezési igényű feladatrendszerekkel történő bevezetése, csak más európai országoknál (pl.: Németország) történt meg.
Ez a rendszer Magyarországon nyilvánvalóan humánerőforrás igényes is lehet, azonban a jövőben ez a kezdeményezés a biztonságos munkavégzés irányába mutatna. Az egy feladat-egy vezető elv nemcsak feladat megosztási kérdés, hanem biztonsági kérdés is egyben. A későbbiekben vizsgálat tárgya lehetne a megbizással irányított, tehát a tüzoltás egyszemélyi felelős vezetője által kijelölt vezetők beosztási kategóriájának a kérdése a szervezeti hierarchia rendszerében. Meghatározó eleme a tüzoltás vezetésének, hogy a rajok parancsnokai általi vezetés alapvetően a saját állományukra korlátozódjon, a magasabb szintre pozícionált vezetők jelenléte pedig mindenféle biztosítva legyen, az irányítást is igénylő feladatok végrehajtásánál.
2. A TŰZOLTÁS SZERVEZETÉNEK KIALAKÍTÁSA
KÁRHELYSZÍNEN

2.1. Rendelkezés a kárhelyszínen

A gyors helyszíni feladatkiosztás különösen nagy jelentőséggel bír, a veszélyek korai beazonosítása, másrészt a szükséges intézkedések meghatározása, és csapategységekre való lebontása érdekében. Ez egy kritikus szakasza a káresetek felszámolásának, mert a tűzoltási taktikát nagyban befolyásolja a nem megfelelően beazonosított probléma, és a veszély kezelésére nem kellő megalapozottsággal hozzárendelt erő, - eszköz mennyisége, továbbá a konkret, vagy nem konkret, de hibás elvi feladat kiszabása.

A véleményem alapján a tűzoltás vezetése ez egyik legnehezebb feladatkör a katasztrófavédelem szervezetében. Különösen fontos vizsgálni azoknak a feladatoknak a körét, amelyekkel lehet, és szükséges terhelni a vezetőt, és azokat leválasztani, amely végrehajtását nem tudja felügyelni. Jogszabály alapján azonban minden elvégzett munkáért megis felelőssé tehető, akár személyesen felügyelte a végrehajtást, akár kiszervezte azt.

A feladatok osztályozása a tűzoltás általános szabályai szempontjából kettő alapelvet emelnék ki, amely minden esetben magán hordozza azokat a szempontokat, amelyek irányadóak a beavatkozás szempontjából

"A tűzoltás során a szükséges erőket, eszközöket, oltóanyagokat tervszerűen kell alkalmazni. A tűz terjedését meg kell akadályozni, az égést meg kell szüntetni, az égés feltételeit ki kell zárni."

„Az ohlási módszerek közül azokat kell alkalmazni, amelyekkel a tűzoltás az emberéletet, a testi épséget a lehető legkisebb mértékben veszélyezteti, és a lehető legrövidebb idő alatt, a lehető legkisebb kárral, a lehető legkevesebb erővel, eszközzel, a lehető leggazdaságosabban végezhető el.” [2]

Ezeknek az elveknek kell tehát megfelelnie a tűzoltás vezetőjének, és a beosztottainak is, amelyeket a későbbiekben részletesen is tárgyal a dolgozat.

43 A tűzoltásvezető a tűz oltásának egyszemélyi felelős vezetője, előljárója a riasztott és a tűzoltásban részt vevő tűzoltóknak. (39/2011 BM rendelet)
Elvi megközelítésben a szervezhető beosztásokon keresztül végrehajtható feladatkörök összehangolása az elsődleges feladatköre a tűzoltás vezetőjének, amennyiben a káreset valamely területe, vagy ahhoz köthető feladat nem a közvetlen irányítása alá esik.

A tűzeset, vagy műszaki mentés irányítójának tehát egyrészt beazonosítási funkciója van a lehetséges veszélyforrások, és azok hatásainak felmérésében, másrészt azonnali helyzetjelentési kötelezettsége van a műveletirányítás felé az ehhez feltétlenül szükséges erők megállapítása tekintetében. A szükséges erők jelzést követő — műveletirányítás általi — mozgósítás után a helyszíni felderítés követő korrekció, vagyis a riasztási fókozat minősítése már azt jelenti, hogy a helyszínen tartózkodó tűzoltásvezető a problémát átláta, és a beazonosított súlypontok kezelésére konkrét kivitelezhető terve van, amelyhez gyors, előzetes erőkalkulációt is végzett. A gyakorlott tűzoltásvezetőknek kevesebb, míg a kevésbé rutinosnak ez természetesen több időt jelent. A káreset felszámolásának az elkezdése szempontjából csak az a fontos, hogy ne maradjon felderítés nélküli eseményrészlet, valamint a szükséges — súlypontokhoz rendelhető — végrehajtó állomány, az igénybe vehető eszközökkel rendelkezésre álljon, vagy legalább tervezhető legyen a későbbiekben. Ez akkor szükséges, amennyiben a helyszínre érkező erők kevesebben vannak, mint amennyire a felszámoláshoz feltétlenül szükség lenne. Egy pontatlanul leírt esemény — a jelző által — okozhatja ezt a problémát, azonban nem várható el egy állampolgártól, hogy az esemény minden egyes részletet pontosan leírja a pillanatnyi stressz hatása alatt. Itt a katasztrófavédelem műveletirányítója, és a hívásfogadó központokban dolgozó operátor közötti szakmai szempontú szemléletkülönbség is megnyilvánul. Feltételezésem szerint a szervezet képességeit ismerő hivatásos műveletirányító jobban irányíthatja a jelzővel fojtatott beszélgetést, ezáltal gyorsabban, és pontosabban tud lényegi információkhoz jutni az eseményről, míg a hívásfogadó operátora protokoll szerint kérdezt, és a kötelező kérdéseken kívül csak azok a plusz információk jelennek meg, amelyeket a jelző személy magától is elmond.

Az erők megosztása, azaz szétosztása már a következő lépés, amely során funkció, vagy teljesítmény, esetleg mindkettő figyelembe vételével a tűzoltásvezető a szervezhető beosztásokon keresztül feltölti az általa meghatározott esemény-kezelési végpontokat végrehajtó állománnyal, valamint azok vezetőivel. Itt a feladatok lehetnek mentési jellegűek, amelyek a veszélyeztetett személyek, a veszélyeztetett hatásoktól való eltávolítását,

44 A tűzoltás vezetője által létrehozott „munkakör” a tűzoltás szervezetében, amelyet feladatcsoport, vagy konkrét feladat végrehajtására szervezett a helyszínen lévő tűzoltói állománnyal (a szerző a 39/2011. RM. rendelet alapján)
kimentését jelentik, és technikai jellegűek, amelyek szakfelszerelések, vagy kiegészítő felszerelések használatához kötődnek. Általános feladatok tűzoltás esetében a tűz tevékenységek, a tűzoltás, vágási bontási feladatok, egyéb támogató jellegű munkák.

A kialakított tűzoltási szervezet tagjai alárendeltjeivé válnak a vezetőnek, és az általa meghatározott taktikát megváltoztatniuk nem lehet. A kapott feladatokat, amennyiben nem jelentenek közvetlen életveszélyt végre kell hajtaniuk. Számos esetben a veszélyvállalás is konkrét problémát jelent a tűzoltásvezetőnek, hiszen a tűzoltói hivatással a szervezetbe belépő munkavállalók vállalják a veszélyes munkavégzést, amelyet mindenki különbözőképpen értékel. Általánosnak mondható az a megállapítás, hogy a tűzoltói mentalitás fontos attitűdje a meghatározott kapcsolatos negatív előítélet, ami nem azt jelenti, hogy a tűzoltásvezetők — például veszélyes anyag, vagy sugárzó izotópok jelenlétében — megfelelő felderítés nélkül megkezdenék a beavatkozást. Kérdőíves vizsgálatok során kiderült, hogy a látens veszélyekkel kapcsolatban hatjának akár szüneteltetni a beavatkozást, amennyiben nem rendelkeznek érdemi információval az anyaggal kapcsolatban. Azért is szükséges tehát a közvetlen, személyes vezető jelenléte, — aki ellenőrzi a végrehajtás formáját, minőségét, hatásait, — hogy a veszély nagyságát objektíven értékelni tudja egy felelős személy. A veszély növekedésével nem feltétlenül növekszik arányosan a munkát végző tűzoltó veszélyérzete. Ezek a vezetők, vagy vezetést támogató személyek, a szervezetet beosztásokba kinevezve felelőssé válnak a szakszerű, és biztonságos munkavégzésért.

Vezetői szintek

Megállapításom alapján a tűzoltás szervezetének 4 szintje azonosítható be koordinációs szempontból, amelyek az irányítói szint, a vezetési szint, a személyes vezetési szint (operatív vezetés), valamint a beosztotti szint. Ebből az első háromnak lehetősége, sőt kötelezettsége van korrekciókat végezni a tervezés, és a vezetés folyamatában.

Mivel a katasztrófavédelem tűzoltó egységeinek a szervezeti kultúrája alapvetően parancsuralmi rendszerre épül, ezért leginkább Fayol korai klasszikus leadership (vezető) modellje valósul meg. Ebben az esetben a vezető a hozzá fűződő hatáskörére alapján meghatározza a beosztottaktól az elvárt tevékenységet a saját akaratának, és a szervezet célkitűzésének megfelelően.[14].
Ehhez a gondolathoz hozzáfűzhető, hogy a tűzoltói csapatszintű végrehajtás, az egymás munkájára, szaktudására épülő bizalmi rendszer, a bajtársiasság is hozzá tartozik a szervezeti kultúrához, így nem ritka a parancs, vagy utasítás kiadása előtti (gyors) szakmai egyeztetés, akár a vezetői hierarchia különböző szintjén dolgozók között is. [8]

2.2. A koordináció megvalósulása a tűzoltás szervezetében

Az írányítás, mint a hatalomgyakorlás formája, két szervezet közötti olyan hatalmi viszony, amelyből az egyik szervezet (irányító), a másik szervezetre (irányított) befolyást gyakorol. A befolyás az írányító akaratának érvényesülését jelenti. Az írányítás elemei az írányítás alanya (irányító), az írányítás tárgya (irányított), az írányítás célja (a szervezeti célok), az írányítás tartalma (a feladatok összessége). Az írányítás során az írányító eszközei közül (jogi eszközök, nem jogi eszközök) a nem jogi eszközökkel történő írányítás valósul meg a tűzoltás szervezetében, mint például a feladat megmagyarázása, gyakorlati segítségnyújtás, tájékoztatás.[15] Ezt nevezhetjük közvetlen koordináciának is, mert konkrét megoldási iránymutatása van az írányítónak, ellenben a közvetett írányítással a cél, vagy a feladat van csak megjelölve. Ebben a hatalomgyakorlást formában a közvetlen vezetők írányítását érdem, mint például a szakaszparancsnokoknak a rajparancsnokok irányába megvalósuló rendelkezéseket. Az írányítás, és a vezetés tartalmilag nem igazán tér el egymástól, de az írányítás alatt a kívülről gyakorolt befolyást, vezetés alatt pedig belülről érkezőt értünk. [8]

2.3. A vezetői szintek és a célok összefüggése

A vezető a veszélyhelyzeti folyamatokba be kíván avatkozni, mégpedig olyan módon, hogy a kárfelszámolási tevékenységet sikerre vigye, azaz az ő elképzelt stratégiája (érőgazdálkodási elve), és taktikája (tüzoltási módozatok alkalmazása (támadás, védekezés, ezek kombinációja) érvényesüljön. Az általa meghatározott feladatokat pedig az operatív szinten dolgozók a személyes vezetőjükön keresztül végzik. A tűzoltásvezető kiadott parancsai, és utasításai biztonságos végrehajtást is kell, hogy garantáljanak a végrehajtók szempontjából. Ez egy alapvető igény, és erre épül a vezető felé irányuló bizalom is, hiszen a vezetettnek is fontos hogy a vezetőnek világos, pontos elképzelése legyen az elvégzendő feladatokról, valamint a beosztottakról való gondoskodásról.
A stratégiai szint, és a taktikai szint a tűzoltás szervezetében nem választható el egymástól, mert elvi erőcsoportosítást, feladatok súlyozását jelenti az elérendő hatás, vagy végcél érdekében. [8]

8. ábra Stratégiai, taktikai, és operatív döntések egymáshoz való viszonya a rendelkezésre álló idő, és a jövőbeni kihatások függvényében (Forrás Restás A.; Rácz Sándor által szerkesztve)

2.4. Klasszikus vezetési stílus szerinti megközelítés

A vezetői tevékenység összetettsége miatt, a funkciói és feladatcsoportjai szerint is vizsgálandók, amelyet Fayol az alábbiak szerint csoportosított: [16]

- tervezés
- szervezés
- rendelkezés
- koordináció
- ellenőrzés

Ezek a funkciók a vállalati kultúrában inkább, de a káresetek felszámolásában is értelmezhetők. Értelmezésük tartalmilag változhat, hiszen a tűzoltói munka főbb céljai, és időfüggése miatt egyes funkciók jelentősége kisebb hangsúlytal jelenik meg adott esetben. „egy jó terv erőszakosan és késlekedés nélkül végrehajtva jobb, mint egy tökéletes terv végrehajtva a jövő héten.”45

A tervezés témakörében a szervezet (tűzoltási szervezet) alapvető céljai (tűzoltás, műszaki mentés), a tapasztalt körülmények, és a kívánatos állapot közötti különbség

45 George S. Patton, former US general
meghatározása, az eltérések feloldásához kapcsolódó feladatok, és a hozzá köthető tényezők felismerése, mind probléma mind lehetőség szintjén, és a tevékenységek sorrendiségének a meghatározása érhető. A vezetőt mindenféle köti a szervezet alaprendeltetéséből fakadó kényszere, miszerint a veszély elhárításával, az élet, és az anyagi javak védelmében tegyen erőfeszítéseket. A tűzoltás és műszaki mentés folyamatában a felderítés jelentősége, hogy beszerezze, azokat az információkat, amelyek lényegesek a tervezés szempontjából.

„A felderítés legyen alkalmas

a) az adott és a várható helyzet felmérésére,
b) a helyes megoldás megválasztására és a szükséges feladatok meghatározására,
c) a tűzoltás egyes szakaszai során felmerülő speciális feladatok megoldására,
d) a beavatkozók biztonsága érdekében a szükséges övintézkedések meghozatalára.

Helyszíni felderítés nélkül a beavatkozás megkezdésére nem adható parancs.” [2]

A szervezés már egészen pontosan leírható a tűzoltás vezetésének szempontjából, hiszen a végrehajtandó feladatok előkészítéséhez kapcsolódó szervező tevékenységről van szó, amelyben már megjelennek azok a funkcionális szervezeti egységek, amiket célzottan a már korábban meghatározott beavatkozást igénylő folyamatok kezelésére igénybe kell venni. Ezek a szervezeti egységek, mint például egy életmentésre létrehozott mentési raj, vagy szakasz, megkapják azokat a hatásköröket, amelyek a tevékenység végrehajtásához szükségesek. A tűzoltásvezető hatáskörébe tartozó jogok érvényesek az általa szervezett csapategységek tekintetében is. A tűzoltásvezető jogai közül ilyen esetben a magántulajdonba történő behatolási jog „a tűzoltás vagy életmentés érdekében – a diplomáciai vagy nemzetközi jogon alapuló más mentesség figyelembevételével – természetes és jogi személyek, valamint jogi személyiség nélküli szervezetek tulajdonában, használatában, kezelésében álló területre, létesítménybe behatolást elrendelni;’’[2] a feladatokat végző személyeken keresztül valósul meg.

Egyes megállapítások szerint az irányítás, a vezetés igazgatása, tehát logikailag megelőzi azt, de tartalmilag közel azonos jellemzőkkel bírnak [17]. Legtöbb esetben felcserélhetők a fogalmak, kivéve az eredendően irányítási feladatnak tekintett struktúráknál. A véléményem alapján, amikor véget érnek a tervezési, és szervezési feladatok, és a szükséges erők, és eszközök indokolják a tevékenységek térbeli szétválasztását, a rendelkezések kiadása után, a koordinációs feladatok következnek a tűzoltás vezető részéről, amelyeken belül súlyozottan az irányítási funkciót kell érteni. Az irányítás alatt, a tűzoltás vezetésében a külnöbőző egységek összehangolását kell érteni, amely a tűzoltásvezető szintjén megvalósul. Az egymástól függetlenül munkát végző egységek, amelyek nincsenek
egymással munkakapcsolatban, nem tudnak egymás tevékenységéről közvetlenül (de természetesen értesülnek ezekről a rádióforgalmazás során), nem irányíthatják át erőiket, amennyiben érzékelik, hogy egy másik — külön irányítással rendelkező egység — azt igényelné. Ez a jogosítvány a tűzoltásvezetőt illeti, és a műveletirányítást, utóbbi olyan módon, hogy további erőket indíthatnak a helyszínre a fellépő új feladatok miatt. Az átcsoportosítás helyszíni szervezéssel valósulhat meg kizárólag.

A tűzoltásvezető támogatása, a káreseti felszámolásban a funkcionális beosztásokon keresztül valósul meg. A szervezet alapvető céljainak a végrehajtás szempontjából a feladatok révén támogató szerepet tölt be több beosztás is. A háttéraparancsnok, a háttéraparancsnok-helyettes, a törzstiszt, összekötő, eligazító, biztonsági tiszt, valamint a műveletirányítás is — összhangban a tűzoltásvezető döntéseivel — részt vesz ilyen jellegű feladatokban.

A tűzoltás vezetésére jogosult személy, amennyiben különböző helyszínek, más-más típusú feladatokat kell végrehajtania, akkor rendelkezik, tehát utasítást, vagy parancsot ad egyik (szintén tűzoltás vezetésére jogosult) alárendelt vezetőjének (tűzoltásvezető - helyettes, háttéraparancsnok, háttéraparancsnok-helyettes, szakaszarancsnok, rajparancsnok, mentési csoport parancsnok [2]). A parancs általában tartalmazza a szükséges erőket, és a konkrét feladatot is, mint például ”kezdjétek meg a tűzzel érintett lakás feletti lakások átvizsgálását egy rajjal”, „kezdjétek meg az épület északi oldalán körül a raktár oltását, és a tetőszerkezetek a védelmét négy sugárral (x,y egységekkel)”. Azonban lehetséges az olyan típusú utasítás is, amikor a feladat általános jellege miatt nem határozható meg konkrét végrehajtási forma, csak a kívánt végcél fogalmazódik meg, mint például „akkapadlyozzátok meg a tűz átterjedését a melléképületre”.

Amennyiben további erőkre van szükség, azokat a műveletirányításon keresztül odarendelheti. Ilyenkor már irányítóként, mintegy kívülről tekintve az eseményekre a tűzoltás szervezetére kívülről gyakorol hatást. Ez a kettősség nagy teher a vezető számára, hiszen minden veszélyeztetett folyamat kezelésére ő hozott döntéseket, és rendelt erőket, de a végrehajtás közbeni állapot, a sikeresség, vagy sikertelenség esélye késve juthat el hozzá, amennyiben olyan személyes vezetési teherrel kell foglalkoznia, amely szintekkel az irányítói szint alatt van.

A vezetői funkciók vizsgálatánál egyértelműen látszik, hogy szintbeli ugrást kell tennie a vezetőnek, ha közvetlen irányítással akarja végezni egy egység irányítását, amelyre nincs is szükség, hiszen a megbízással (parancs, és utasítás) működtetett kisebb egységek vezetőinek ezt el kell tudniuk látni. A kiservezett tevékenységeket vezetők (nevezzük őket személyes
vezetőknek) is megkapják a vezetői funkciókat, önálló munkavégzésre alkalmasak, viszont irányítási lehetőségük csekély. A közvetlen vezetésük alá tartozó konkrét feladatot végrehajtó tüzoltói állomány hatékony alkalmazásakor elkerülhetetlen a parancs, vagy az utasítás szerinti kitűzött cél eléréséhez kapcsolható további tervező, és szervező munka, amely annak közvetlen ellenőrzésével is jár. A kapott feladat felülellenőrzését természetesen joga van a tűzoltás egyszemélyes felérdős vezetőjének elvégezni, de azt, a megbízott keresztül is megteheti. A feladatok meghatározásakor van olyan időszakasza a feldolgozás, amikor még nem áll rendelkezésre az összes információ a kérelmettel kapcsolatban, ezért lehetséges, hogy további erők hozzárendelése szükséges az adott feladathoz. Előfordulhat olyan eseményalakulás, amikor a kalkulált erő egy váratlan fordulat miatt (például veszélyes anyag kiszabadulása, robbanás) már nem biztos, hogy elegendő, ezért ebben az esetben a tervezési és szervezési folyamat újraindul, és más taktikai elképzelés megvalósítását kell kidolgozni. Ez viszont már ritkán lehetséges a személyes vezető szintjén, mert az esetleges plusz erők odarendelése már nem tartozik a hatáskörébe, ez alól kivétel, ha rendelkezik akkor a létszámtartalék közvetkezőképpen, hogy a feladat megoldható a saját forrásaival. Katonai megközelítés alapján a káresetek lefolyása hasonló a harctéri cselekményekhez bizonyos tekintetben. Az ellenséges, veszélyes környezet, az időfüggés, és a döntés alapján kapcsolódó információk szükségeséhez alapján hasonló tervezési, szervezési, koordinációs, és ellenőrzési funkciók jelennek meg a vezetés rendszerében, azonban egyértelműen szétválik a vezetői, és a személyes vezetői feladatok között. Katonai megközelítés szerinti meghatározás alapján, a funkciók szerinti csoportosítás a következőképpen néz ki a tűzoltás szervezetében.[18]

A vezetői funkciókat csoportosítva, azokat öt csoportba lehet sorolni:

- tervezés
- szervezés
- rendelkezés
- koordináció (Fayol) (a tűzoltás szervezetében: irányítás, vezetés, személyes vezetés)
- ellenőrzés

A tervezés és a vezetés rendszerint vezetői szinten köthető, a személyes vezetés és az ellenőrzés a vezetői szint alatti személyes vezetéshez köthető. (9. ábra) Mindamellett az ellenőrzés a vezető kötelezettsége, hiszen elemi érdeke az utasításának a végrehajtásáról ellenőrizni, vagy ellenőriztetni. A tűzoltás szervezetében ezeknek a funkcióknak egy része
keverten jelenik meg a különböző beosztásokban, és a hangsúlyossága is különböző. Az operatív szinten vezetőhöz inkább a személyes vezetés, és az ellenőrzés kapcsolódik, míg a többi funkció korlátzóva van, ellenben a vezetői, irányítói szintekhez az irányítói szerep, tervezés, szervezés kötődik jobban. [8]

Különböző irányítási struktúra esetén tehát különböző koordinációs formák valósulnak meg, amelyekben más, és más vezetési funkciók lesznek hangsúlyosak.

<table>
<thead>
<tr>
<th>Irányítási formák a 39/2011 BM rendelet szerint</th>
<th>Megvalósuló koordinációs forma</th>
<th>Hangsúlyos vezetési funkciók a vezető szempontjából</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alapirányítás</td>
<td>személyes vezetés, vezetés</td>
<td>tervezés, szervezés, rendelkezés, koordináció, ellenőrzés</td>
</tr>
<tr>
<td>Csoportirányítás</td>
<td>irányítás, vezetés</td>
<td>tervezés, szervezés, rendelkezés, koordináció</td>
</tr>
<tr>
<td>Vezetési törzs</td>
<td>irányítás</td>
<td>tervezés, szervezés, rendelkezés, koordináció</td>
</tr>
<tr>
<td>Törzskari vezetés</td>
<td>irányítás</td>
<td>tervezés, szervezés, rendelkezés, koordináció</td>
</tr>
</tbody>
</table>

4. számu táblázat Hangsúlyos vezetői funkciók, irányítási, és megvalósuló rendelkezési formák,(Készítette: Rácz Sándor)

A vezetéshez, kapcsolódnak azok a funkciók (tervezés, szervezés, rendelkezés, koordináció, személyes vezetés, ellenőrzés), amelyek természetesen az irányításra is jellemzőek, az előzőekben tárgyalta alapján csak a vezető elhelyezkedése a szervezethez képest (kívülről, vagy belülről) más. A személyes vezetésnek (vezetőnek) — mint vezetési formának, vagy tekintetjük eszköznek is — nem hangsúlyos funkciója a szervezés, tervezés, koordináció, de kapcsolódik hozzá az ellenőrzés funkció (4. táblázat).

<table>
<thead>
<tr>
<th>Irányítás</th>
<th>Vezetés</th>
<th>Személyes vezetés</th>
</tr>
</thead>
</table>

9. ábra Konkrét koordinációs formák a tűzoltás szervezetében (Készítette: Rácz Sándor)

2.5. Végrehajtás az önálló taktikai egység szempontjából

Szinte minden tevékenységet, különösen a veszélyes területen végzett munkát párhuzam végzik a tűzoltók. A tűzoltás szervezetében, az oltással foglalkozó állomány alap szervezeti egysége, a konkrét oltást végző sugárvezető, és segéd-sugárvezető.
Az sugárvezető46 (beosztott) feladata (kötelessége) a tűzoltásnál a sugár47 működtetése során:

„a sugarat a taktikai elveknek és a kapott utasításnak megfelelően működtetni, sugarával védni a többi sugárvezetőt és a tűzoltásban résztvévőket, elkerülni a baleset, életveszély és lehetőség szerint a kár okozását, ügyelni arra, hogy a tűz keletkezésére utaló nyomok, tárgyak, lehetőség szerint eredeti helyükön megmaradjanak, az előrehatolást és más irányba való mozgást úgy végezni, hogy visszavonulásának lehetősége mindenkor meglegyen, életveszélytől, balesetével védve legyen, tűzoltáskor elsősorban azokat a szerkezeteket oltani, védni, amelyek egés vagy hősugárzás hatására szilárdsgágot elveszíthetik, és a szerkezet összeomlását idézhetik elő.”

A tevékenységet szabályozó rendelet alapján a segéd sugárvezető a sugárvezető munkáját elősegítő tűzoltó, a sugárvezető alárendeltje, akinek kötelessége:

„segíteni a sugárvezetői a sugár irányításában, előrehaladásában és a helyváltoztatás érdekében elhárítani az előforduló akadályokat, szükség szerint végrehajtani a tömlő hosszabbítását, az osztó vonalánál hátrább csak indokolt esetben tartózkodni, de akkor is figyelemmel kísérinti a sugárvezetőt, a sugárvezetők utasítása szerint az osztót kezelni, valamint a járművezetővel és a sugárvezetőkkel folyamatos kapcsolatot tartani”

Ezek a szabályok, mint sorvezetők határozzák meg azt a mozgásteret, amelyet elvárunk a sugárvezetőtől, és a segítőjétől. A sugárvezető — mint a tűzoltás szervezetének egyik legnagyobb veszélynek kitett elemi „egysége” —, és beosztásában segítő segédsugárvezető a saját működési területén végez olyan feladatokat, amelyet, az őket tűzoltásvezetői megbízással vezető rajparancsnok közvetlen felügyeletével hajt végre. Ez az alap tűzoltási egység együttműködéséből, valamint ennek az elvi szervezeti egységnek „szorzataiból”, úgy, mint raj, szakasz összehangolt munkájából áll össze a hatékony koordinált tűzoltói csapatmunka.

A tűzoltói tevékenységre eredendően illik a kiszámíthatatlan jelző, amelyet úgy tudunk csökkenteni, ha a lehető legkisebb részegységekre bontjuk a tevékenységet, csökkentve a hibameghosszabbodását, és ezeket az egységeket csak akkora feladatmennyiséggel terheljük, amelyeket még biztonságosan végrehajthatnánk. A hibázás lehetősége mégis ott leselkedik a tűzoltóra munkája közben, hiszen a munkáját végző figyelme lankadhat, a

46 A sugárvezető a sugár kezelésével és irányításával megbízott tűzoltó. [2]

47 olyan tűzoltó szakfélszerelésekből összeszerelt vízellátó rendszer, amely egyik végén a víznyomást előállító szivattyú áll a vízfőrészre együtt, a másik végén a víz szabályozható kilövését biztosító sugárcső.(szerző)
fáradtsággal arányosan fiziológiai szükségszerűség az információ felvétel, és az érzékelés korlátzódása. Miller [7] szerint minden ember elveszíti nagy mennyiségű a komplex információk, és különösen veszélyforrások általi nyomásban a biztos átlátását a helyzet felett. Ez a mennyiségű információ eltérő személyenként, de maximum 7 ± 2 számú adatot tud egy személy feldolgozni, és ezekbe beletartozik az információkkal végzett műveletek is. [7]

A beosztottakat vezető (rajparancsnok) feladatát a tűzoltásnál — jogszabály szerint [2] — a következő elvek szerint kell, hogy végezze:

„kapcsolatot tartani az általa vezetett raj tagjaival és a számára meghatározott feladatot a taktikai elveknek megfelelően végrehajtani,”

„jelenteni előlátjárójának a tűz alakulását, a tett intézkedéseit, a tűz keletkezésére kapcsolatos értesüléseit, megállapításait, a parancsban meghatározott feladat végrehajtását” [2]

A beosztottak szintjén a feladatvégzés, a környezeti ingerek értékelése, és elviselése, valamint a kommunikáció is eléri ezt az adat mennyiséget, a személyes vezető szintjén a kommunikáció, a kapott feladat végrehajtásának folyamatos értékelése, a biztonságról való gondoskodás stb. szintén eléri, sőt meg is haladhatja ezt a szintet.

1. kép Személyes vezető (jobb szélen), sugárvezető, és segéd sugárvezető munkavégzése [20] (illusztráció)

Az alap szervezeti egységek feladatai láthatóan a saját mozgásterükkel kapcsolatos rész feladatok megoldására lettek meghatározva, amely így is nagy terhelést jelent az egyén számára. Az egyéni védőeszközökkel ellátott tűzoltó számára, a látótér, és az érzékelés jelentősen beszűkül, a légzőkészülék használata mellett, és az elszenvedett hőterhelés

48 olyan rendszeresített védőeszközök, amelyek a használóját egy vagy több károsító hatás ellen védik, és személyes használatra, lettek kiosztva (szerző)
hatására alapvető érzékelési korlátok keletkeznek. A nyomás alatt lévő tömlők mozgatása a tűz irányába megerősítő munka, amikor a feladatot végző személy nemcsak a saját fizikai teljesítőképességét kell mérlegelnie, hanem szükséges a veszélyek újból, ismétlődő felmérése is. A személyes vezető jelenléte nemcsak a helyszini vezetés miatt szükséges, hanem a jelentkező veszélyek folyamatos észlelése, és a biztonságos munkavégzés feltételeinek a biztosítása miatt is fontos (1-2. számú kép). A tűz oltásával megbízott tűzoltók (sugárvezető, segédsugár-vezető) a szervezeti szocializációjuk révén nemritkán túlvállalják magukat, mert a fáradással, a veszélyérzetük már nem olyan hatékonysággal működik, mint a feladat elkezdésekor. A tűzoltói munkabírás, és veszélyérzékelés adaptálódik a feladathoz, tulajdonképpen hozzászokik a veszély jelenlétéhez, és különösen fontos a kontroll azoknál, akik kevesebb tapasztalattal rendelkeznek a szakmájukban. Gondoljunk bele, hogy egy nagyobb kiterjedésű raktártűz, során akár 20 sugár üzemeltetése is szükséges, amelyek csak személyes vezetés mellett működtethetők biztonságosan. Megállapításom szerint egy fő személyes vezetésével végrehajtható azonos típusú feladatok száma — kizárólag azonos helyszínen — csak egy lehet, tehát akkor lehetséges több taktikai egység munkáját vezetnie egy személynek, amennyiben az egy helyszínén van, egymástól jellegükben nem térnek el, valamint a közvetlen rálátás biztosított, illetve a kommunikáció folytonossága zavartalan.

A tűzoltókra váró feladatok rendszerint együtt jelentkeznek, ezért ehhez alkalmazkodva sokszor nem történik meg ezek szétválasztása, azokat együttesen mintegy szintetizálva hajtják végre. A szerelési tevékenység során — amelyet minden tűzoltó az alapismeretekkel együtt sajátít el — rendszerint tetten érhető az a folyamat, hogy mindenki a hozzá térben legközelebb található részfeladatot hajtja végre, — eltérve a szabályszerű eljárástól — csak hogy gyorsítsa a végrehajtás menetén. A személyes vezető jelenléte tehát a garancia arra, hogy folyamatos kontrollt gyakoroljon a rá bízott állomány felett, és a tűzoltás vezető megbízásával élve hajtja végre annak taktikai elképzeléseit.

49 tűzoltó szakfélszerelések szabályszerű alkalmazásának szabályrendszere, amely a szakszerű, gyors és biztonságos feladat végrehajtás érdekében került kialakításra (a szerző)
2. kép Tűzoltásvezető (balról), rajparancsnok (jobb szélen), sugárvető, segéd sugárvető munkavégzése [20] (illusztráció),

A tűzoltás nagy része dinamikus aktív folyamat, amely közben a konkrét végrehajtók más nézőpontból látják az eseményeket, mint az őket személyesen vezetők, illetve a tevékenységet távolabbról irányítók, köszönhetően a szintükön megjelenő észlelési folyamatnak [14]. A komplex információkból, csak részegységeket fogunk fel, amely függ az egyéni érzékelési különbségektől, valamint a perspektívánkból fakadó nézőponti különbségektől. A tűzoltói munkavégzés, a tűz konkrét oltását végző személy szempontjából a szervezeti cél szerinti feladatvégzést, (tehát ami le van írva), a parancs szerinti feladat végrehajtását (amit mondott a parancsnok), valamint a lehetőség szerinti (ami a helyszínen fogad) megoldási alternatívák kiválasztását, és alkalmazását jelenti.

A problémákat megoldó ember a saját szintjéhez méri a megoldandó helyzet által generált feladatokat. Hogy tudom elvégzni a rám bízott feladatot, valamint van-e egyéb — a folyamatos felderítéssel szerzett információk birtokában — jobb megoldási lehetőségem a feladat teljesítésére a már elkezdett módszeren túl? Mint egy navigációs készülék, amely ha akadály van az útvonalon, azonnal új lehetőséget kínál fel. A tűzoltók feladatmegoldása hasonlóképpen értelmezhető, mert amennyiben egy optimális, a megoldás irányába mutató tevékenységünk közben felfedezünk új lehetőségeket, további információkat szerzünk be, amely felkínál egy jobb módszert, eltérhetünk az eredeti elképzelésünkktől. Olyan lehetőségről beszélünk, amely végrehajthatóbb, nagyobb nyereséggel, és kisebb kockázattal jár a szervezet, és az egyén végső céljának szempontjából. Ebben az esetben az új módszer válik optimálissá, és szükségesssé válik a folyamat újra tervezése. [8]
2.6. A tűzoltás szervezetében megvalósuló stratégiai, és taktikai elvek

A tűzoltásvezető stratégiai feladatai tűzoltásnál
A kárhelyszínen a személyes vezetést végzőket ki kell jelölni, részükre végrehajtó személyi állományt kell biztosítani, a feladatokat ismertetni kell velük, fel kell jogosítani őket a munkavégzésre, és utasítani kell őket annak megkezdésére, amelyet minden résztvevővel (rádión, személyesen) közölni kell. A személyes vezetők a tűzoltásvezető beosztott vezetői, a kapott taktikai utasításokat végre kell hajtatniuk a beosztottakkal, amelyhez feltétlenül szükséges a személyes jelenlétük.

A tűzoltásvezető feladatai (kárhelyparancsnok) stratégiai feladatai fontossági sorrendben:
1. életmentés, majd tűzoltás, vagy műszaki mentés
2. tűzoltás vagy műszaki mentés, majd életmentés (amennyiben nincs biztonságos mentési útvonal)
3. életmentéssel párhuzamos tűzoltás vagy műszaki mentés (amennyiben van eléggé erőforrásom)

A tűzoltásvezető stratégiai kérdései káresetnél
A stratégiánkat befolyásoló körülményeink, azaz milyen környezet fogad a kárhelyszínen, mennyi élő erőm (létszámom), mennyi eszközöm van, és elegendő-e ez egy átfogó, mindenre kiterjedő feladatvégrehajtáshoz, tehát egyszerre el tudok-e kezdeni minden feladatot, vagy rangsorolnom kell? [8]
1. Mennyi az aktív folyamat, mennyi a passzív folyamat?
2. Az aktív folyamatokból melyek statikusak, melyek dinamikusak?
3. Melyek tartoznak a korai, melyek a késői (később végrehajtható) szakaszhoz?
4. Mennyi információ ez, képes vagyok-e átlátni az összes folyamatot, vagy szükséges delegálnom (átadnom) egy részét?
5. Mennyi mozgásteret adok a beosztott vezetőimnek a képességei, tapasztalata alapján?
6. Személyesen ellenőrzöm a folyamatokat, vagy ezt is átadom a beosztott vezetőknek?

50 39/2011. (XI.15.) BM rendelet A tűzoltási és műszaki mentési tevékenységének általános szabályairól 11.pont Tűzoltás
A személyes vezető taktikai kérdései

1. Mik a feladat és a cél közötti végrehajtási eljárás kiválasztásánál az egyéni döntési lehetőségeim, a rendelkezésemre álló erőforrásokat?

2. Mennyi segítséget kell nyújtanom a rám bízott állománynak, tehát mennyire bízhatok az önállóságukban, szükséges-e beavatkoznom a részfeladatok végrehajtási módozatainak a kiválasztásánál?

3. Mennyi felügyeletet, ellenőrzést igényelnek? Ebből következően, tudok-e energiát fordítani további információszerzésre, egyéb operatív feladatok előkészítésére, segítséve a tűzoltásvezető munkáját?

Látható, hogy más szempontrendszer alapján dolgozik a személyes vezető, és más szerint az öt irányító tűzoltásvezető. Ezekből az elvekből következik, valamint ennek érdekében a feladatok lehatárolását kell elsősorban elvégezni, illetve azok vezetésére személyes vezetőket kijelölni, valamint olyan beosztásokat szervezni, amelyek funkcionálisan kisegítik a tűzoltásvezetőt: [8]

1. a hírforgalmazás szervezésében
2. a tartalékképzéshez kapcsolódó személyi, technikai feltételek biztosításában
3. a rendelkezésre álló, és a később érkező erők eligazításában
4. a biztonsági kérdések megoldásában

Bármilyen állapotok fogadják a tűzoltókat a helyszínen, a végső cél a tűz eloltása, a tűz terjedésének a megakadályozása, a lánggal való égés megszüntetése, valamint az égés feltételeinek a kizárása, mindezt úgy, hogy lehetőleg a leggyorsabban, legszakszerűbben, valamint a legbiztonságosabban dolgozzunk. [19][21] A tűzet a környezetre gyakorolt hatásánál fogva kell bezonosítanunk, és intézkedéseket hoznunk, figyelembe véve a lehetőségeinket. A TMMSZ különleges szabályait, és a tevékenységet szabályozó rendelet általános rendelkezéseit alkalmazva kell a munkáját végeznie a tűzoltónak. Kijelenthetjük, hogy lényegében stratégiát, és ezen belül taktikát kell választanunk a tűzoltáshoz. A tűzoltást megakadályozását támogató módszerek alapján kell a tűzoltókat megelőzően felügyelettel, akkor a környezet védelmére kell a hangsúlyt fektetni. Amennyiben a tűzoltók oltási tevékenysége alapvetően a tűz támadására irányul, de a megszerelt sugarak51

51 Tűzoltó szakképesítéseiből kialakított vízhálózat, amelynek a tűz felőli végén a sugárcső található, amelyből oltóvíz juttatható a tűzre.
között nem zárható ki a lánggal való visszagyulladás, akkor a védekező és a támadó stratégiát együttesen kell alkalmazni. Kézenfekvő, hogy amennyiben a kárfelszámolás körülményei megváltoznak, akár káreset felszámolási stratégiát is kell változtatnunk, mint ahogy taktikát is, módszereket, valamint erő, eszköz, mennyiséget is [22].

A kidolgozott eljárásrendek, amelyek a tűzoltók szakszerű munkavégzését szabályozzák, típusos cselekvési sorrendiség alapján igyekeznek a keletkező feladatokhoz a végrehajtásban résztvevőknek, valamint azok irányítóinak végrehajtható, és végrehajtandó protokollokat leírni. Ezeknek az eseményeknek közös jellemzői, hogy váratlanul következnek be, és a felszámolás közben is számítani kell további nem várt fejlemény kialakulásával, amelyre annak észlelésekor kell intézkedni. [8]

2.7. A súlyponti erőmegosztás alapelve

A probléma leginkább abból adódik, hogy a káresetek jelentős része komplex problémát hordoz magában, amelyet a szintén komplex feladat végrehajtására rendszeresített tűzoltó egységek hártanak el önállóan. [23] Lényegében egy kulcsszerelő — a tűzoltásvezető — dönt az alkalmazandó eljárásról, koordinálja a végrehajtást teljesen, vagy csak annak részfeladatait. A helyszínen tapasztaltakból szerzett információk, illetve azokból helyes következtetések levonása döntő jelentőséggel bír a súlypontok beazonosításához. [8]

A terület alapú súlyponti erő-eszköz megosztás alapelvei

A terület alapú súlyponti erőmegosztást olyan esetekben célszerű alkalmazni, amikor a káresemény felszámolása indokolja a tűzoltás vezetésének a megosztását, valamint az egy időben zajló feladatok irányítása nem teszi lehetővé a biztonságos munkavégzést garantáló személyes vezetői tevékenység megjelenését a végrehajtó állomány mellett. Ez lehet akár fél raj, teljes raj, vagy akár tűzoltási szakasz is. A tűzoltás vezetője nem lát rá a munkafolyamatokra, mert azok akár más helyiségben, szinten, épületrészben, vagy más épületben folynak. [8]

A feladat alapú súlyponti erő-eszköz megosztás alapelvei

A feladat alapú erőmegosztáshoz fel kell ismerni azokat a típusos feladatokat, amelyek végrehajtására elöl erő jelenléte szükséges. Mivel a tűzoltás szervezetén belül viszonylag kötött feladat végrehajtás van, pontos egyértelmű feladat meghatározás szükséges a
 résztvevők részére. Ezek a feladat kiosztások természetesen kötődhetnek területekre, és általában keverten jelennek meg, de alapvetően a funkciója, illetve a végső cél érdekében megfogalmazott utasítás jellemzi. Sugárveszélyes területen elképzelhető, hogy fizikailag rálát a folyamatokra a tüzelésvezető, de sem a létszámváltást, sem az ellenőrző pontot, sem a mentesítő állomást, sem a tüzelést, vagy műszaki mentést nem tudja egyszerre felügyelni, hanem delegálja ezeket a feladatokat, ezért ezeket feladat alapú súlyponti erőmegosztásként határoztam meg.

2.8. Súlypontok keresése

Szükséges tisztázni azon feladatok körét, amelyek a mentéshez, ezen belül kifejezetten a tüzeláshoz szükséges erők meghatározásához különös jelentőséggel bírnak. A tevékenységet szabályozó tűzvédelmi törvény a tüzelással kapcsolatban elsődlegesen a veszélyeztetett személyek mentésével, a tűz terjedésének megakadályozásával, az anyagi javak védelmével, a tűz eloltásával, a szükséges biztonsági intézkedések megtételével, valamint a tűz közvetlen veszélyének elhárításával határoz meg feladatokat. Ezeket a vezérő elveket nem lehet megkerülni, és tulajdonképpen ezeket alkalmazva kell erősorrendet felállítani a feladatok elvégzéséről. A tevékenység végrehajtási rendelete az általános szabályok kifejtésénél, valamint a beosztásokból adódó feladatok meghatározásánál már csoportosítja azokat a feladatokat, amelyek ez előzőekben említett tevékenységeken belül értelmezhetők. A káreseteknél jelentkező feladatok időben véghajtása a közvetlenül, vagy közvetetten veszélyeztetett személyekkel kapcsolatos intézkedésekkel kezdődik. Ezután, vagy ezzel egy időben, de a jelenlévő erőktől függően, ezzel párhuzamosan természetesen az anyagi javak védelmére tett intézkedések következnek. A sorrendiség megállapítása kézenfekvő is lehetne, hiszen arra a problémára kell intézkedni, amely időrendben korábban kényszeríti ki azt a hatása miatt. Számolni kell viszont azzal, hogy számos probléma egy időben jelentkezik, és párhuzamosan feladatok megszervezésére kényszeríti a tüzelés vezetőjét. A döntéshozatalnem lehet halogatni, mert az esemény lefolyása közben kialakuló negatív következmények már olyan szakaszba lépnek, amelyek visszaforditathatatlan károkat okoznak [24].

A súlypontok keresésénél a sorrendiséget, a veszélyek iránya, nagysága, természete, az élő szervezetre, és a környezetre gyakorolt hatása, és időbeni lefolyása alapján kell meghatároznunk. A problémák felismerésénlévélemzhetjük, hogy ez egy olyan pontja az események, amely azonnali megoldást igényel, és olyan súlypontjaként tekintünk erre a
pontra, amely annak kezelése nélkül egészen biztosan élet, vagy vagyonbiztonságot veszélyezteti. Itt egyrészt szubjektív elemekről van szó, másrészt objektív, előre definiált kényszerekről.

Milyen módon tudnánk dinamikus, de mégis konkrét szabályrendszer alapján erőt, eszközt meghatározni úgy, hogy ezzel időt nyerünk és pontosabb eredményeket kapunk? Először is meg kell határozni a folyamatokra való hatások minőségét, illetve a várható nyereséget kell vizsgálni más hasonló eljárás összehasonlításával. Nem könnyű feladat ez, hiszen időnyomás alatt kell helyes döntéseket hoznia a tűzoltásvezetőnek, úgy hogy általában nem áll rendelkezésre az összes információ a döntéshozás pillanatában.

A döntéshozó az adott helyzetet felismerése emlékezetétől olyan tanult, begyakorolt, vagy átélé megoldási sémát vesz elő, amely kielégíti az adott helyzetben elvárható minimális követelményeket, teljesíti az elfogadható célokat, illeszkedik az elérhető információk iránymutatásaihoz és megvalósítható cselekvési változatot kínál. Ez a folyamat a felismerés alapú döntéshozatali eljárás, amely jellemzi a tűzoltás vezetőjének a döntéshozatali mechanizmuszát. Kiegészíthetjük egy másik eljárás tipussal, amely szintén része a tűzoltást vezető döntéshozatali eljárásának, ez pedig a kivétel alapú döntéshozatal, ahol az eseménykezelés számos mozzanata protokollszerűen zajlik, ezáltal nem igényel irányítói döntést. Célja az irányítói feladatok drasztikus csökkentése, és beavatkozni csak a célértékkel való eltérés esetén kell [25]. A feladatok felismerése, megosztása, kiszervezése, szervesen kapcsolódik ehhez az eljáráshoz. A jó döntéshez minőségi információ, és idő kell, amelyekből általában nem rendelkezik elegendővel a veszélyhelyzeteket kezelő vezető.

Az információjelerzés folyamatát felderítésnek hívja a tűzoltó szakma, és az eseménykezelés teljes időtartamán keresztül tart. A felderítés elvégzése nélkül nem adható ki utasítás a beavatkozás megkezdésére sem [2]. Általában a rendelkezésre álló idő nem elegendő a teljes felderítés végrehajtására sem a külső veszélyek, sem a belső veszélyeztető tényezők pontos nagyságának, konkrét megnyilvánulásának, hatásának meghatározására. Mindenféle törekedni kell azonban a közvetlen veszélyben lévő személyek, a tűz által érintett, és veszélyeztetett területtel, valamint egyéb veszélyforrásokkal kapcsolatban (gáz, villamos energia, veszélyes anyag, sugárforrás) információt szerezni [26]. Ezért célszerű erősorrendet felállítani a mindenféle felderítendő eseményekről, veszélyforrásokról, amelyek nélkül súlypontot sem tudunk meghatározni. [8]
A súlypontok sorrendisége, a feladatok osztályozása

Mindenképpen sorrendiséget kell felállítani az elvégzendirő felelősségének tekintetében, mert bizonyos feladatok az azonnal végrehajtandó feladatokhoz fognak tartozni, míg lesznek olyanok, amelyek időrendben nem igényelnek azonnali végrehajtást, de intézkedéstigen. Ez adódhat abból is, hogy nincs a helyszínen olyan mennyiségű erő-eszköz, és végrehajtó állomány, amely lehetővé tenné egy azonnali végrehajtást igénylő feladat elvégzését. Életmentés esetén előfordulhat, olyan helyzet, hogy a mentésben részt vevők erőlt lekötő a feladat, ezért nem lehet párhuzamos feladat végrehajtást elrendelni, holott eléggé erő, eszköz esetén ez megtörténne. Az életmentés témájával kapcsolatban fontos megemlíteni, hogy a tűzoltói hivatás egyik sarkalatos pontja a veszélytárgyalás témaköre, amely nem választható le a szakmai szempontok szerint hozott döntések, végrehajtott feladatok, elért eredmények köréről [28]. A legjobb megoldásra törekvő tűzoltószemély nem ritkán részesíti előnyben a nagyobb időelönnyel járó eljárást, még akkor is, ha ezzel a veszély nagysága is növekszik. A vállalt veszély nagyságával csökkenhet a végrehajtási idő, az alkalmazandó erő-eszköz mennyisége, és ezzel párhuzamosan nőhet a mentendő értékek. [8]

Érzékeny terület kategóriákra bontani a veszélyeztetést, majd kárterületségi fontosságú sorrendet megállapítani, és döntést hozni ezzel kapcsolatban. A káresetek változatossága bonyolulttá teszi a kategóriák kialakítását, és a helyszíni kategóriákba történő besorolást..

A feladatok rangsorolására az alapelvek meghatározhatók, a veszélyeztetett személyek, ingatlanok, ingóságok veszélyeztetettségének mértékében. A fontosságot a közvetlen életveszélyben lévők, a közvetett életveszélyben lévők, a tűz terjedésének megállítása, annak körül határolása, és a végleges oltás sorrendiségében kell meghatározni.

- Ki van közvetlenül, vagy követetten veszélyeztetve, és területileg mi az elhelyezkedése?
- Mi van közvetlenül, vagy követetten veszélyeztetve, és területileg mi az elhelyezkedése?

Amennyiben ezeket a vezérlő elveket követjük, meghatározhatunk egy feladatok sorrendvégzését, és feladatrangsor, amely a súlypontok kezelésénél alkalmas lehet a tevékenységek fontossági sorrendjének a megállapításához. [8]
Súlyponti feladatok rangsorolása

A feladatvéghajtás szükségessége szempontjából három kategóriát azonosítottam be:

1. Azonnali végrehajtásra kötelező feladatok köre
2. Azonnali intézkedést igénylő feladatok köre
3. Intézkedést igénylő feladatok köre

A feladatok sorrendiségére a felsorolt kategóriák bármelyikéhez köthető veszélyeztetettsége alapján, hiszen azt a veszélyeztetés mértéke, és a várható veszteség indokolja. A feladatok sorrendiségére nem kötött, hiszen érték alapú vizsgálat szükséges. Ezáltal a sorrend változhat, hiszen egy közvetetten veszélyeztetett lakóhelyi környezethez képest, állatok közvetlen veszélyeztetése magával vonhat azonnali erő, eszköz igényt.

A feladatok (súlypontok) sorrendiségére az alábbi felosztás alapján rangsorolható:

1. Élet védelméhez köthető (közvetett, közvetlen életveszély)
2. Lakóhely, lakókörnyezet védelméhez köthető
3. Kritikus infrastruktúrához, infrastruktúra védelméhez köthető
4. Műemlékek védelméhez köthető
5. Állatok védelméhez köthető
6. Ingóságok, vagyonértékek védelméhez köthető

Fontos megjegyezni, hogy az azonnal rendelkezésre álló erő-eszköz mennyiség, és a későbbiekben érkező, de tervezhető erőforrás összefüggése teszi bonyolulttá a feladatszabást, de minden esetben az emberi élet védelmében hozott intézkedések állnak az első helyen. [8]

2.9. Részkövetkeztetések

A vezetési, és végrehajtási szintek újragondolása, valamint az irányítási formák újraértelmezése, a biztonságos munkavégzés feltételeit erősíthetik.

A fejezetben meghatároztam, hogy a szervezhető beosztásokon keresztül végrehajtható feladatkörök összehangolása az elsődleges feladatköre a tűzoltás vezetőjének, amennyiben a káreset valamely területe, vagy ahhoz köthető feladat nem a közvetlen irányítása alá esik.

Mivel a katasztrófavédelem tűzoltó egységeinek a szervezeti kultúrája parancsuralmi rendszerre épül, ezért feltételezésem alapján leginkább Fayol korai klasszikus leadership (vezető) modellje valósul meg. Ebben az esetben a vezető a hozzá füzződő hatásköre alapján meghatározza a beosztottaktól az elvárt tevékenységet a saját akaratának, és a szervezet

fontossági sorrend az értékmentés tekintetében (készítette Rácz Sándor)
célkitűzésének megfelelően. Megállapításom alapján a tűzoltás szervezetének 4 szintje azonosítható be koordinációs szempontból, amelyek az irányítói szint, a vezetési szint, a személyes vezetési szint (operatív vezetés), valamint a beosztott szint. Ebből az első háromnak lehetősége, sőt kötelezettsége van korrekciókat végezni a tervezés, és a vezetés folyamatában. Ezzel összefüggésben megállapítottam a tűzoltásvezetéshez kapcsolódó hangsúlyos vezetői funkciókat a kárhelyszínen, valamint az irányítás, vezetés, személyes vezetés egymásra hatását.

A vezetői szintekhez kapcsolódóan meghatároztam a stratégiai, és a taktikai feladatokat, valamint az ezekhez kapcsolódó célokat. Az önállóan beavatkozó taktikai egység feladatainak a vizsgálatánál megállapítottam, hogy a személyes vezető biztosítása megkerühetetlen a káresemény teljes időtartamában. Meghatároztam a terület, és a feladat alapú erő, és eszközmegosztás alapelvet, ami által a káresemény súlypontjai, és ezáltal a szükséges erőforrás is pontosabban kialakítható a káresetek felszámolásához. Ezek a feladatok rendszerint keverten is megjelennek, de összességében lehetséges külön kezelni ezeket az elveket. A terület alapú súlyponti erőmegosztásánál a tűzoltás vezetője nem lát rá a munkafolyamatokra, mert azok akár más helyiségben, szinten, épület részben, vagy más épületben folynak. Amennyiben fizikailag rálát a folyamatokra a tűzoltásvezető, de azokat nem tudja személyesen egyszerre felügyelni, akkor feladat alapú súlyponti erőmegosztásról beszélünk.

A fejezetben kategóriákra bontottam a súlypontokat jelentő feladatokat, majd érték alapú rangsorolással kialakítottam a mentési sorrendet. Feltételezésem alapján a beavatkozások többsége alapvetően komplex feladatszervezést igényel, szükségszerű lenne a beavatkozások feladatainak ilyen módon történő kategorizálása.

A tűzoltásvezető szintez legerősebben az irányítás kapcsolódik, amely a feltételezésem szerint vertikálisan magasabb szintet jelent a vezetésnél. Annál az eseményrészletnél, ahol a tűzoltásvezető nem tud primer információkhoz jutni szükségszerűen le kell azokat határolni, és önálló súlypontként kezelni, önálló erő, eszköz, és létszám hozzárendelésével, személyes vezető jelenléte mellett. Nem elvárható megfelelő alternatívák kiválasztása olyan esetekben, ahol nem kap vizuális megerősítést a körülményekről. Megállapításom szerint egy fő személyes vezetésével végrehajtható azonos típusú feladatok száma — kizárólag azonos helyszínen — csak egy lehet, tehát akkor lehetséges több taktikai egység munkáját vezetnie egy személynek, amennyiben az egy helyszínen van, egységtől jellegükben nem tényleg el, valamint a közvetlen rálátás biztosított, illetve a kommunikáció folytonossága zavartalan.
3. SÚLYPONTOK MEGHATÁROZÁSA NAGY ERŐFORRÁSIGÉNYŰ KÁRESETEK PÉLDÁIN KERESZTŰL

A fejezetben három káresettípus feldolgozásán keresztül fogok a hipotéziseimmel összefüggő elemző munkát végezni. A középmagas és magas épületek tüzeinek oltása külön fejezetet kapott a TMMSZ-ben, és sok tapasztalat halmozódott fel ezzel az eseménytípussal kapcsolatban. A társasházaink jelentős része ilyen típusú, és ezeknél az eseményeknél sok esetben vegyesen jelentkezik az értékmentéssel, és az életmentéssel kapcsolatos feladatok, amelyek sok esetben térben el is válannak egymástól. A sugárveszályos területen végrehajtott eseménykezelés történhet izotópok, szállítása, használata, feldolgozása, gyártása során, nukleáris létesítményben tűzesetnél, és műszaki mentésnél is. A komplexitását a könnyű belátni, mert a veszélyforrás jellege mellett az esemény helyszíne is probléma lehet. Az alkalmazandó védekezési formák szervezést igényelnek, speciális szakértelmet, mindamellett az általános tűzoltó feladatokat is tartalmazza ezt a tűzoltói munka. A nagy alapterületű létesítmények tüzeinek oltásának előfordulása már sokkal ritkább, ezért ebben a témában — különösen a szervezési részében — nincs akkora gyakorlata a tűzoltóságoknak. A TMMSZ csarnok jellegű épülmények tüzeinek oltásaként nevezi ezt az alkalmazott tűzoltási módozatot. Hasonlóan a lakóépületek tűzeseteihez ez az esemény is térben, és feladattípusban eltérő elemeket tartalmaz, ahol leginkább a térben kiterjedése jelent problémát. Olyan többsúlypontos káresetként tekintek ezekre az eseménytípusokra, amelyekhez hatékony szervezés, és megfelelő erőforrás szükségeltetik koncentráltan azok kezdeti szakaszában.

3.1. Középmagas és magas épületek tűzoltása

Az általános tűzoltói feladatok elemeinek az alkalmazása azért nehéz ebben a környezetben, mert nagyon nagy veszélyeztetés alakulhat ki rövid idő alatt a lakók, és természetesen az értékek tekintetében. Ez az alkalmazott beavatkozás rendkívül időfüggő, mert gyors tűzterjedésre, és füst általi veszélyeztetésre lehet felkészülünk. Az oltási feladatok, és a mentési feladatok is közvetlen vezetést igényelnek. A menekülési lehetőségek a lakók szempontjából korlátozottak, sok esetben önerőből nem is tudják megvalósítani. Az elzárkózás mint lehetséges védekezési forma nem alkalmazható minden társasház esetében. Amennyiben megvan az esély, hogy ezt a megoldást válasszuk a lakók védelmére, mert sem a lépcsőház irányából, sem a szellőző rendszerek keresztül nem jut be a füst a lakásokba, akkor is szükséges annak az ellenőrzése, hogy megvalósult-e ez a védekezési forma minden
lakás tekintetében. A szükséges alapértőt az eseteket jellemző folyamatok befolyásolhatják. Láthatjuk, hogy egy feltételezett veszélyhelyzet, és a faábrában hozzá rendelt riasztandó erőmennyiség nyilvánvaló összefüggést mutat. A táblázatban látható példát megvizsgálva, láthatjuk, hogy lakóházi környezethez kialakításra került egy riasztandó létszám, amelyeket szükség esetén az eset jellegének megfelelően el lehet téríteni pozitiv, vagy akár negatív irányba is. Ez az első stratégiát meghatározó pontja az eseménykezelésnek, hiszen a kapott információ alapján beazonosítható az esemény jellege, és a hozzá minimálisan szükséges erő. Jelen esetben a különleges rendeltetésű egyéb járműkategóriák, — amelyek szintén eltérést mutatnak — az átláthatóság miatt nem lettek megjelenítve. (5.sz.táblázat)

<table>
<thead>
<tr>
<th>típus</th>
<th>kategória 1</th>
<th>kategória 2</th>
<th>kategória 3</th>
<th>kategória 4</th>
<th>egész raj</th>
<th>fél raj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tűzeset</td>
<td>Lakóházi</td>
<td>Emeletes/ középmagas</td>
<td>Egy lakás</td>
<td>Egy helyiség ég</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Lakóházi</td>
<td>Emeletes/ középmagas</td>
<td>Egy lakás</td>
<td>Füstöl</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Lakóházi</td>
<td>Emeletes/ középmagas</td>
<td>Egy lakás</td>
<td>Robbanás</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Lakóházi</td>
<td>Emeletes/ középmagas</td>
<td>Egy lakás</td>
<td>Több helyiség ég</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

5. számú táblázat Részlet a BM OKF intézkedés a hivatásos katasztrófavédelmi szervek műveletirányításának rendjéről és a riasztás szakmai szabályairól 1. sz. mellékletből „Faábra"

(Szerkesztette: Rácz Sándor)

Számtalan olyan részlete van egy ilyen eseménynek, amely komolyan befolyásolhatja a szükséges erőigényt, de nem jelenik meg pontosítva a hozzá szükséges erőforrás. A korábbiakban említettek szerint elég csak arra gondolnunk, hogy egy tűzvédelmi szempontból nem megfelelően létesített, vagy üzemeltetett lakóházban a füsttel telített lépcsőház mellett a közművek vezetékeit rejtő strangokon keresztül is átterjedhet a szintek között a füst és a tűz, közvetlenül veszélyeztetve a felsőbb emeleten élőket. Ez jelentősen felgyorsítja a füst elterjedését, és nem ad lehetőséget a lakóknak a menekülésre. A lakóházból élők életkora is befolyásolja a mentéshez szükséges erőt, hiszen idős/beteg személyek nagyobb kapacitást kötnek le. A beavatkozás időpontja is meghatározó lehet, hiszen az éjszakai órákban, egy későn jelzett tűzeset során már nagyobb tűzzel, és nagyobb füstfejlődéssel kell számolnunk [29]. Nem utolsó sorban egy középmagas 10 emeletes épület 1. emeletén keletkezett tűz a felsőbb emeleteken történő életmentéshez nagyobb erőt kíván a füst, felfelé terjedése miatt, és a tűztoltáshoz kevesebbet, mert az oltósugarak szereléséhez relatív kis idő kell, viszont például a 9. emeleten keletkezett tűztoltás előkészítése igényel

53 Lakóépületekben, a lakószintek közötti felszálló közművezetek, vagy csővek elvezetésére alkalmazott építészeti megoldás amelyekről a lakásokba leágazások vezetnek (szerző)
több időt, és az életmentéshez lehet kevesebb létszámot szervezni. Ezeknek az
információknak egy része csak a helyszínen szerezhető be, és többszörös létszámeltérést is
eredményezhetnek, hiszen a táblázatban indulóerőnek feltételezett legnagyobb erőt kivánó
verziójában 2,5 rajjal kalkulál a faábra, amely nem ritkán ennek a háromszorosát igényli
valójában. Ezt a különbséget már a riasztás pillanatában fel kell ismerni feltéve, ha van
elegendő információ ennek az eldöntésére. Megállapítható, hogy a veszélyhelyzeteknél
mihamarabb fel kell ismernünk az intézkedést igénylő folyamatban rejlő súlypontokat, és a
szükséges válaszlépések meg kell tennünk.

Kiragadva ezt a típusos eseményt láthatjuk, hogy jelentős erő-eszköz eltérések lehetnek
a káreset részleteiből adódó többletfeladat által. A fontossági sorrend a korábban kifejtett
módon a veszélyeztető hatásnak kitett személyek, értékek mentésének a sorrendiségén kell
alapulnia, amelyet természetesen tovább bontva jutunk el a pontos erő, és feladat
meghatározáshoz. Ezt az elvet követve, tehát a sürgősségi feladatokhoz rendelt erők egy
időben történő alkalmazása határozza meg a végső erőigényt, amelyet ki kell egészíteni a
feladatok elhúzódása miatt szükséges változásámban. Kiemelve az életmentést, a füsttel
telíthető lépcsőházban, ahol az életmentést végre kell hajtani egy személy lementéséhez
jellemzően két főre van szükség. A légző készülékek kapacitása mellett — amelyből a
mentendő személy is használ — fizikai korlátai is vannak a végrehajtó tűzoltónak. A
mentésben érintettek részére változásait is szükséges szervezni, a folyamatosság
érdekében. [8]

3.1.1. A terület alapú erő-eszköz megosztás középmagas-magas lakóépületnél

A káresetek felszámolása alatt keletkező feladatok sok esetben kisebb erőt igényelnek pl.
szellőztetés megoldása, épületrész átvizsgálása, felderítés stb. amelyek a tűzoltás
szervezetének legkisebb taktikai elemével fél rajjal is megoldhatók. A terület alapú
erőmegosztás, illetve erő, eszköz meghatározás során figyelembe kell venni a káresemény
folyamán érintett területet, a közvetlenül veszélyeztetett területet, és a közvetetten
veszélyeztetett területet is (10. számú ábra). [8]

3.1.2. A feladat alapú erő-eszköz megosztás középmagas-magas lakóépületnél

Ilyenek lehetnek az életmentéssel, a tűzoltással kapcsolatos konkrét szerelési utasítások, de
akár más célfeladattal is meg lehet bízni a végrehajtót, amelynek tűzoltás segítő funkciója
van (átvizsgálás, ajtófeltörés, tetőbontás, szellőztetés). Látható, hogy a feladat alapú erőmegosztás területalapú is egyben, de néha elválík attól (pl. szellőztetés az épületben).

Az általam felismert folyamatok kezeléséhez meghatározandó feladatok, azok hatásai alapján az alábbi csoportosítást alkalmaztam középmagas-magas lakóépület esetén:

Azonnal végrehajtandó feladatok köre:
- Feladat alapú: Felderítés, Életmentés, Tűzoltás.
- Terület alapú: Felderítés, Életmentés, Tűzoltás.

Azonnali intézkedést igénylő feladatok köre
- Feladat alapú: A kimentett személyek elhelyezésével kapcsolatos szervező intézkedések, a környezet károsodásának csökkentésére tett szervező tevékenység, szellőztetés stb.
- Terület alapú: Veszélyeztetett területek meghatározása, a lezárással kapcsolatos szervező tevékenység. stb.

Intézkedést igénylő feladatok köre:
- Feladat alapú: Az összegyűlt oltóvíz eltávolításával kapcsolatos feladatok. Tűzvizsgálati eljárással kapcsolatos intézkedések. stb.
- Terület alapú: Utómunkálatok megszervezése egymástól távol eső helyszíneken. stb. [8]

10. ábra Középmagas-magas épülettűz intézkedési sémája
(Készítette Nagy László ábrája alapján Rácz Sándor)
3.1.3. Feladatok kiosztása

Ennek a kérdéskörnek az alapvetése, a személyes képességek ismerete, amely alapján szükség szerű különbséget tenni a feladatra leginkább rátermettek tekintetében. A képességbeli különbségek eldöntik, milyen mennyiségű feladattal terhelem, és mennyire kell kontroll alatt tartanom a munkáját. Hagyományosan a tűzoltó munkát, mint sok más, nagy gyakorlatot igénylő tevékenységet egyszerű részfeladatok begyakorlásán keresztül kell megtanulni. Egyes beosztások alacsonyabb, míg más beosztások, magasabb kvalitást, terhelhetőséget, ismeretet és gyakorlatot igényelnek. A kompatibilitás, azaz az egyes egységek cseréje szükségszerű, de belátható, hogy különbség van például egy füsttel telített zárt térben már többször bevettet tűzoltó és egy gyakorlatlan újonc alkalmazhatóságában.

3.1.4. A beavatkozás szakaszai, jelentőségük a súlypontok felismerésében

Amennyiben sorrendbe rakjuk a tűzoltással összefüggő tevékenységek szakaszait láthatjuk, hogy mindegyik szakasza súlypontokat rejt magába, amely szervezési intézkedést igényel.

1. Riasztás (műveletirányítás által meghatározott erő, eszköz mennyiség a faábra alapján)
2. Vonulás (a helyszínre tartó egységek útvonalának, érkezési sorrendjének meghatározása)
3. Felderítés (a teljes folyamat alatt tart, sok esetben önálló tevékenysége foglal magába, ezért szükséges hozzárendelni létszámot, közvetlen veszély jelenléte)
4. Életmentés (személyi döntések, létszám meghatározással, közvetlen veszély jelenléte)
5. Tűzoltás előkészítése (oltóanyag kiválasztása, oltóanyag mennyiség meghatározása, személyi döntések)
6. Tűzoltás (hosszú idón át lekötött erő-eszköz igény, közvetlen veszély jelenléte)
7. Utómunkálatok (végző fázisú oltási feladat, amely hosszan elhúzódhat, tartalék létszámgigény mellett, közvetlen veszély jelenléte)

3.1.5. Az önálló kárhelyszíni vezetés középmagas, és magas lakóépületeknél

A későbbiekben celszerű lehet újra gondolni azt az elvet, hogy a helyszíni irányítóknak milyen konkrét személyes vezetői, és ezen túl milyen irányítói szerepvállalás fér bele a munkájukba a káresetek felszámolásakor. Középmagas, és magas lakóépületek tűzénél is feltételezni kell a többsúlypontos munkavégzést (10. ábra), és mivel viszonylag magas számban van jelen a tűzoltói beavatkozásoknál ez az eseménytípus, a leginkább itt
jelentkezhet a legkorábban a különálló vezetés igénye. Az eddigi gyakorlaton túlmutathat az-az elképzelés, hogy a beavatkozásokat jelentősen befolyásoló súlypontok kezeléséhez azonnal önálló vezetőt biztosítsuk a beavatkozó csapategységek (szakasz, raj, fél raj) tekintetében, míg a káreset felszámolásának a vezetését végző személy már a mentés kezdeti szakaszában is különálló személy legyen.

Az ilyen típusú káresetek jellemzője, hogy nem lehetséges egyszerre az esemény fő feladatait adó súlypontok kezelését (életmentés, tűzoltás) személyes felügyelettel vezetni. A közvetlen alárendeltségi állományról való gondoskodás csökkenti a tűzoltásvezető mozgásterét, hiszen neki nagyobb volumenű kérdésekkel kell foglalkoznia a szervezési feladata során, mint az eredetileg irányítása alá beosztott tűzoltói állomány által végrehajtott aktuális feladat [31]. Átlátható szituációban — amikor nem kell magára hagynia a beosztottjait — képes rá, hogy egy időben szervezzen azonnali végrehajtást igénylő feladatokat, és azokat vissza is ellenőrizze. Komplex eseménykezelésnél — követve az egy súlypont-egy vezető elvet — a tűzoltásvezető a feladatokat végőket, azok személyes vezetőin (parancsnokain) keresztüli irányítja. Szükséges tehát a kárfelszámolás kezdeti szakaszában függetleníteni a tűzoltásvezetőt a rajától, ami által a közvetlen parancsnoki felelősségtől is mentesül, és teljes szabadsággal szervezheti a beavatkozásban részt vevő erők munkáját, amely így hatékonyabb is lesz. A KMSZ tűzoltás vezetésére jogosult állománya sok esetben nem lehet ott a kezdeti felszámolási szakaszban, ezért fontos megoldani, hogy a helyszínen tartózkodó kárhelyparancsnok teljes biztonságban vezethesse a helyszínen tartózkodó valamennyi tűzoltót, beleértve azokat, akik teljesen a látókörén kívül esnek egy feladat végrehajtása miatt.

Ezen a lényeges szervezési kérdésen túl a továbbiakban kézenfekvő az igény, hogy mind a helyszínen döntési helyzetben lévő tűzoltásvezetőknek, mind a műveletirányításnál dolgozóknak, a helytálló döntéseinek a meghozásához megfelelő szempontrendszert alakítsunk ki, segítve ezzel a munkavégzés feltételeit, hatékonyabbá téve a beavatkozásokat. További kutatásokkal kidolgozható, olyan vezetési, és döntési szempontrendszer, valamint annak oktatása, amely pontosabb alapör, és eszköz meghatározást tesz lehetővé, valamint az információ korai értékelésével, már a riasztás előtt, de legkésőbb a helyszínen pontosabban meghatározható a részt vevők létszáma, és a kárfelszámolás technikai igénye, elkerülve a végrehajtás közbeni újratervezést, amely akár jelentősen módosíthatja a felhasználásra szánt erőforrások nagyságát, annak összetételét, illetve a taktikai elképzeléseket.
3.2. Radioaktív izotópok környezetében végrehajtott tűzoltói beavatkozások

Napjainkban is aktuális elvárás a lakosság részéről, hogy a tűzoltóknak azokra a veszélyekre is legyen képességük, amelyek előfordulási valószínűsége szerencsére igen alacsony. Tehát nem válogathatunk a ritkábban előforduló eseménytípusok között, hogy melyek azok, amelyek statisztikailag kimutathatóan nagyobb számban vannak jelen a mindennapjainkban, és azok között, amelyek viszonylag ritkán fordulnak elő. Az eseményekhez köthető veszélyérzet is viszonylagos, hiszen nem kapcsolódik hozzá átérő esemény, elszenvedett sérülés, kártétel. Kijelenthető azonban, hogy ezek a veszélyforrások jelen vannak életünkben, és az ezekkel kapcsolatos káresetek\(^{54}\) felszámolása a Katasztrófavédelem rendszerét, elsősorban a tűzoltó erőket érinti.

Ez a különösen veszélyes — bár igen nehezen modellezhető, és gyakorolható — tevékenység mindeneképpen a klasszikus tűzoltói feladatrendszer elemeire épül.

- Felderítés
- Beavatkozás előkészítése
- Beavatkozás biztonsági előírásai
- Beavatkozás (elsődlegesen életmentés)
- Utómunkálatok

A radiológiai esemény olyan káresemény, amelynél radioaktív (azaz nem nukleáris, de ionizáló\(^{55}\) sugárzást kibocsátó) anyag, esetleg ionizáló sugárzást létrehozó berendezés jelenlétehez köthető a kárhelyszín\(^{56}\). Az ionizáló sugárzásoknak típushoz és dőzőhöz függően egészségkárosító hatásaik\(^{57}\) lehetnek, extrém esetben halált is okozhatnak, miközben érzékszerveinkkel nem, csak műszerekkel detektálhatók. Éppen ezért radiológiai káreseménynél\(^{58}\) az élet- és vagyonmentés során az elsőként beavatkozó tűzoltók sugárvédelme alapvetően fontos.

\(^{54}\) Tűzoltás, és a műszaki mentés gyűjtőneve a BM OKF 6/2016 Főigazgatói Utasítás alapján

\(^{55}\) a közvetlenül vagy közvetve ionizáló részecskékből, illetve ionizálásra képes fotonokból álló sugárzás (atomtörvény) A gázokon és a szilárd anyagokon (pl.: félvezetőkön) áthaladó sugárzás az intenzitás mértékével arányosan ionizálja az atomokat. (Makovecz Gyula Dozimetria mérésének Paksi Atomerőmű Zrt. Oktatási Fősztály jegyzet)

\(^{56}\) Az a terület, ahol a tűzoltást, és a műszaki mentést végzik a tűzoltó erők, és határait a tűzoltás (műszaki mentés) vezetője jelöli ki a BM OKF 6/2016 Főigazgatói Utasítás alapján

\(^{57}\) Az atomok ionizálás közben elektron veszítenek, szerkezetük megváltozik, az élő sejtékben rákkeltő hatású szabadgyökök keletkeznek (szerző)

\(^{58}\) sugárforrás ellenőrizetlenné válása következtében fellépő nukleáris veszélyhelyzet, amely a lakosság, illetve dolgozók nem tervezett és ellenőrizetlen besugárzásához vezethet (nem tartozik ide a nukleáris anyag vagy létesítmény balesete következtében létrejövő ellenőrizetlen sugárforrás) 6/2016 BM OKF Utasítás I.sz.melléklet
A téma feldolgozása során egyértelművé vált, hogy mért értékek hiányában a jogszabályokban fognaknak nem tudunk eleget tenni. Az ilyen típusú események felszámolása közben nem tudunk megfelelő döntéseket hozni, a sugárvédelmi alapelveknek nem tudunk megfelelni.

A természetes sugárforrások, és az ellenőrzött körülmények között felhasznált, vagy tárolt mesterséges sugárforrások jelenlétére nem terheli olyan módon az emberi szervezetet, hogy kapcsolatba hozhatnánk a tűzoltóság alaptevékenységével. A nem tervezett események által kialakult veszélyhelyzetek viszont elsősorban, különösen annak kezdeti szakaszában a tűzoltó erőknek adnak feladatot. A XX. század vívmányaihoz tartozó atomenergia békés, és kevésbé békés felhasználása, a maghasadás által nyerhető energia megkerülhetetlen a ma élő ember számára. Az üzemünkerű körülmények között felhasznált atomenergia biztonságos igénybevételéhez számos nemzetközi irányelv, nemzeti jog eszköz biztosít. \[32\] Mégis lehetségesse válilik, akár technológiai probléma, akár emberi mulasztás, vagy akár rossz szándékú felhasználás miatt, hogy fel kell készülnünk az esetlegesen fellépő károsító hatások elleni védekezésre. Nem könnyű rendszerinten felkészülni olyan hatások ellen, amelyek nehezen modellezhetők, speciális szakértelmet igényelnek, felszámolásuk veszélyes, időigényes, és nagy erőforrások mozgósítása is szükségesse válhat.

A felkészülés folyamata egészségügyi, fizikai ismeretek elsajátításával, kezdődik, majd végrehajtási protokollok készülszhintő alkalmazásával végződik. A sugárzás hatásairól elleni védekezés — eltekintve a másodlagos károk felszámolásával kapcsolatos feladatoktól — nagy részben logisztikai probléma is egyben. A védekezés közben jelentkező feladatrendszer nemcsak a közvetlen beavatkozókat érintő hatások miatt, és az esetlegesen érintett lakosság szempontjából, de a további környezeti károk megelőzése, és felszámolása miatt válik összetett. A dolgozat ezen részének témája a sugárvédelemmel kapcsolatos irányelvek áttekintése, az elhárító szervezetek közül elsősorban az elsődleges kárfelszámolási szakaszban részt vevő tűzoltók felkészítésének lehetőségei, amelyek összhangban vannak a már kialakult, leszabályozott eljárásemlékekkel.[33] [34]

\[59\] 487/2015(XII.30) Korm.rendelezett az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési, jelentési és ellenőrzési rendszerről
\[60\] környezetünkben előforduló sugárforrások, amelyek egyrészt a világürből, a talaj közeteiből, élő organizmusokból, és a levegőből mutathatók ki
\[61\] mesterséges sugárforrások elsősorban orvosi diagnosztikai eljáráskokból, ipari és kutatási felhasználás révén, korábbi nukleáris robbantásokból, nukleáris balesetek, és jelenleg is működő atomerőművek által mérföldöket környezetünkben
\[62\] 1996.évi CXVI törvény az atomenergiáról
3.2.1. A sugárforrások előfordulása

Szükséges a sugárforrások\(^{63}\) szétválasztása a beavatkozást végzők szempontjából, amely ebből a szempontból két kategóriát jelent. A nukleáris\(^{64}\) anyagok előfordulása egyrészről atomerőművek technológiájához, valamint katonai harcászati eszközök közhöz köthető, de a természetben is előfordulhatnak különleges esetekben.

Azoknak a radioaktív anyagoknak, amelyek önmagukban láncreakcióra nem képesek, és akár a természetben előfordulnak, akár mesterségesen előállíthatók, van egy közös jellemzőjük a nukleáris anyagokkal, mégpedig az hogy ionizáló sugárzást bocsának ki. Tehát minden sugárforrás ionizáló, viszont csak az önfenntartó láncreakcióra képes sugárforrások nevezhetők nukleárisnak is egyben. Jogi értelemben az ionizáló sugárzást kibocsátó forrásokat radioaktív anyagoknak nevezzük összegezve, melybe beletartoznak a nukleáris és nem nukleáris források is. A békés célú nukleáris létesítmények közül elsősorban az energiatermelésre létrehozott atomerőművek jutnak az eszünkbe, de meg kell említenünk az oktatási, vagy kutatási céllal létrehozott reaktorokat is.

Magyarországi létesítmények, amelyekben nukleáris, vagy ionizáló anyagokat tárolnak, vagy felhasználnak:

- Paksi Atomerőmű
- Kiégett Kazetták Átmeneti Tárolója (Paks)
- Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Budapesti Kutatóreaktor (Budapest)
- Izotóp Intézet Kft. (Budapest)
- Budapesti Műszaki és Gazdaságtudományi Egyetem Oktatóreaktor (Budapest)
- Nemzeti Radioaktív Hulladéktároló (Bátaapáti)
- Radioaktív Hulladékok Feldolgozó és Tároló (Püspökszilágy)
- 26 db nagy aktivitású (1-es vagy 2-es kategóriájú) sugárforrást felhasználó létesítmény (országszerte)

Külföldi nukleáris létesítmények, amelyek hatásai Magyarország területére kihathatnak:

\(^{63}\) olyan radioaktív anyag, készülék, vagy berendezés, amely ionizáló sugárzás kibocsátására képes (6/2016 BM OKF Intézkedés)

\(^{64}\) a radioaktív anyagok közül mindazok, amelyek önfenntartó láncreakcióra képesek (6/2016 BM OKF Intézkedés)
- Jaslovske Bohunice-i Atomerőmű, Szlovákia
- A Mohovce-i Atomerőmű, Szlovákia
- A Krskoi Atomerőmű, Szlovénia
- A Temelini Atomerőmű, Cseh Köztársaság
- A Dukovany Atomerőmű, Cseh Köztársaság

Mind a nukleáris anyagokkal, mind más sugárforrással (orvos diagnosztikai, ipari diagnosztikai) kapcsolatban szükséges megemlíteni a szállítás közben előforduló eseményeket, amelyekre volt már példa Magyarországon. [35] A 25 kg iridium-192 izotópot szállító kisteherautó a tilos jelzés ellenére hajtott a vasúti sínekre, és ütközött a menetrend szerint közlekedő vonattal. (3. kép) A szállítmány jelölése nem volt egyértelmű, így egy ideig nem tudták az elsőként helyszínre érkező tűzoltók, mivel is állnak szemben. A gamma-sugárzó izotópot tartalmazó ólomkazetta nem sérült meg, ezért a beavatkozás elsősorban a műszaki mentéssel kapcsolatos feladatokra korlátozódott, de a helyszínre érkező tűzoltók csak a később érkező, ionizáló sugárzás mérésére alkalmas mérőműszerekkel rendelkező szakemberek mérései után tudták egyértelműen megállapítani, illetve kizárni a radiológiai veszély jelenlétét, valamint annak mértékét.

3. számú kép Tűzoltók a balesetet szenvedett vonat körül. [36]

Magyarországon nukleáris katastrofa szerencsére nem történt, de a csernobili atomerőműben keletkezett reaktorrongabanás (amely nem nukleáris, hanem kémiai robbanás

65 azonos rendszámú, eltérő tömegszámú atom – ugyanaz az anyag, más neutrosszámmal, pl. ^{235}U és ^{238}U (szerző)
volt) során kiszabaduló szennyeződés (melyből jelentős a hosszú felezési idejű cézium-137 és stroncium-90 izotóp), Európa számos országát érte el, és hatása a talajszint alatti rétegekben a mai napig méhető. A szándékos eseményekkel kapcsolatban Magyarország területén szintén nem tudunk példát felhozni, de Európában előforduló terrorcselekmények már sajnos előfordultak napjainkban. Az elkövetéséhez használt eszköz más volt, de a választott módszer csak attól függ, hogy mihez van hozzáférése az egyének. Az Amerikai Járványügyi Centrum közleménye alapján az előzőekben említett iridium-192 izotóp a gyógyászatban, és az iparban használt gamma-sugárzó, és az USA-ban ebből az izotópból tűnt el a legtöbb ellenőrizetlen körülmények között. Ez az izotóp sajnos kiválóan alkalmas „piszkos” bomba elkészítéséhez is. Magyarországon végrehajtott, robbanószerkezettel elkövetett robbantásos merényletre is volt példa, ahol az elkövető szándéka, az elkövetéshez használt anyagokat figyelembe véve nélkülönösen nagy sérüléseket okozása volt. Nem „várhatjuk” tehát, hogy tekintettel legyenek a lakosságra a terrorcselekményeket elkövetni szándékozó személyek azzal, hogy sugárzó izotópokat nem fognak használni eszközként. Mind a szállítási balesetek, mind a terrorcselekmények, mind pedig az ipari katasztrófák velejárója lehet az azonnal megjelenő ionizáló sugárzáson túl az érintett helyszín szennyeződése, valamint időjárási függvényében további területek veszélyeztetettsége. A veszélyeztetetett területen élőkkel kapcsolatban több olyan intézkedést kell életbe léptetni, amely magas szintű irányítást igényel.

Látható, hogy ez a típusú veszélyforrás túlmutat az elsődleges beavatkozók képességein, mert több szerv összehangolt együttműködése szükséges a hatékony káreset, vagy katasztrófa felszámolásához. Az Országos Nukleárisbaleset - Elhárítási Intézkedési Terv (OBEIT) tartalmazza azokat résztvevő szervezeteket, feladatköröket, veszélyforrásokat, veszélyeztető hatásokat, és a sikeres kárfelszámolás érdekében rögzített eljáráselemeket, amelyek egy ilyen esemény felszámolásához szükségesek. [37] Tartalmazza továbbá a résztvevő szervezetek hatásköreit, ala-fölérendeltségi viszonyaikat, és a lakosság védelmének érdekében szükséges intézkedéseket is.

66 az az idő, amíg az anyagban a radioaktív atommagok száma a felére csökken
67 Centers for Disease Control and Prevention
68 Hagyományos robbanóanyaggal párosított, ionizáló sugárzásra képes anyaggal készített bomba (szerző)
69 A Teréz körúti robbantás (nagykörű robbantás vagy terézvárosi robbantás) 2016. szeptember 24-én 22 óra 36 perc 18 másodperckor történt Budapesten, a Teréz körút 4. szám alatt, felújításra előkészített, üres üzlethelyiség bejáratánál. (Wikipédia)
A dolgozat mindemellett arra a rövid időszakra fókuszál, amikor egy nyitottá vált sugárforrás jelenléteben a tűzoltói munkavégzés elkerülhetetlen, valamint azokra az oktatási, felkészítési lehetőségekre, amelyeket a beavatkozók védelmében életbe lehet léptetni.

Az alaptevékenység napi végzése meglehetősen nagy rutint biztosít a tűzoltók részére, azonban a ritkán végzett különleges feladatokhoz különleges rendeltetésű felderítő gépjárműveket, mint például a Katasztrófavédelmi Mobil Labor70 (KML), illetve egyes megyéken a Katasztrófavédelmi Sugárfelderítő Egység (KSE) is igénybe kell venni. Ezeknek a különleges gépjárműnek a képességei meghatározóak a dolgozat témájául választott beavatkozás felszámolásában.

A tűzoltói beavatkozást igénylő eseménynek van egy olyan szűk időintervalluma, amikor a helyszínről érkező elsődleges tűzoltói erő, és a speciális képzettséggel és felszereltséggel rendelkező KML/KSE kiérkezése között eltelt. A veszélyes anyag jelenléte révén végrehajtott beavatkozások szempontjából a KML-ek támogató funkcióval rendelkeznek a tűzoltás vezetője részére, és elsősorban döntéseik meghozásában segítik azt. Ez a különleges feladatkörrel felruházott szervezeti egység némi időkorláttal is rendelkezik, mert a szakfeladatot ellátó állomány tagjai (Budapest kivételével, ahol 120 másodperc alatt) hivatali munkaidőn belül elindulhatnak, míg az elsőként beavatkozni képes egészekhez elég 120 másodpercnél belül elindulnak a kárhelyszínre. Ennek az időkülönbségnek a káreset felszámolásának szempontjából, különösen annak korai szakasza megkülönböztethetővé teszi az állomány tagjainak, és a szerző BM OKF 4/2017. intézkedés alapján

3.2.2. A sugárveszélyes területen végrehajtott beavatkozás főbb tartalmi elemei

A sugárvédelem az ionizáló sugárzások nem kívánt hatásai elleni védelem, melynek legfőbb alapelvei, hogy a sugárveszélyes tevékenység kellően indokolt és megfelelően optimált legyen. Egy sugárforrásra kapcsolatos káreseménynél, a veszélyhelyzeti beavatkozók érdekében vezetői döntések sorozata szükséges.

A sugárveszélyes területen történő tűzoltói beavatkozások feltétlenül olyan helyszínen zajlanak, ahol ezek a folyamatok további károsító hatást fejthetnek ki, és

70 KML Magyarországon 19 megyében és Budapesten rendszerbe állított különleges gépjárművek, amelyek kiképzett személyzettel, és mérőműszerekkel felszerelve radiológiai, biológiai, és vegyi anyagok azonosítására, és mérésére alkalmasak (a szerző BM OKF 4/2017. intézkedés alapján)
egyszerre több egymástól elkülönülő, önálló vezetést igénylő súlyponttal is rendelkeznek. Sugárzó izotópokat felhasználó, vagy előállító létesítményekben a szervezet képességeinek lehetőségével, a feladatok meghatározása, valamint a közreműködő szervezetek alkalmazása rögzítve van különböző belső szabályzókban, és ezért némileg eltérnek a fejezetben foglaltaktól, ahol elsősorban az események kezdeti szakaszára fókuszáltam, különös tekintettel a helyszínen dolgozó tűzoltó erők tekintetében. [33] [34] [38] [39] [40]

Veszélyforrások megismerése

Az általános tűzoltói munka műszaki mentés és tűzoltás tekintetében is eredendően veszélyes, viszont sugárforrás jelenléteiben — hasonlóan a veszélyes anyagok környezetében végrehajtott feladatoknál jelentkező kémiai veszélyekhez — a fizikai veszélyeken túl, a szervezetünkért érő radiológiai eredetű veszélyekkel is számolnunk kell. Szükséges tehát megismernünk a problémánk fő forrását, a radioaktív sugárzásokat, illetve azok szervezetre gyakorolt hatását. [33] [34]

Az ionizáló sugárzások típusai:

Alfa-sugárzás:

Az α-sugárzás hélium atommagokból áll, áthatolóképessége kicsinek tekinthető. Egy vékony papírlap, néhány centiméter levegőreakció valóban nem hatol át. A szervezetbe bejutva viszont a legveszélyesebb hatást fejt ki biológiai szempontból. Az inkorporációval (belégzés, lenyelés, vagy seben keresztül) bejutott anyag az élő sejtekben súlyos károkat okozhat, ezért a légzésvédelem alapvető az ilyen esetben.

Béta-sugárzás:

Elektronokból vagy pozitronokból álló sugárzás, áthatolóképessége nagyobb az alfánál. 1-2 méter vastag levegőreakció, vékony alufólia, plexin már elnyelődik, ezért a védőruha, sisak megfelelő védelmet nyújt. A szervezetbe kerülve a béta-sugárzó izotópok a szervekben feldúsulhatnak, ezért a légzésvédelem szintén fontos szempont.

Gamma-sugárzás:

A γ-foton töltéssel és tömeggel nem rendelkezik, ezért a legnagyobb az áthatolóképessége. Áthatol falon, vékonyabb lemezen, akár több száz méter levegő. Árnyékolásához vastagabb ólom, vas vagy beton réteget használhatunk, de beavatkozásiak egzik nem megvalósítható. A külső dözzist szinte teljes egészében-e a sugárzástípus adja, a belső sugárterhelése kicsi.

Neutronsugárzás:
Magfolyamatok során felszabadult termikus vagy nagy energiájú neutronokból álló sugárzás. Az emberi szervezetet erősen károsíthatja, jelentős külső és belső sugárterhelést okozhat. Védekezni kis rendszámú anyagokkal lehet ellene, pl. víz, paraffin, műanyag használatával, akár káresetnél is. [33] [34]

Sugárzások hatása

Az ionizáló sugárzások esetében az anyagban elnyelődött energia játszik fontos szerepet a hatások szempontjából. Az elnyelt dózis (SI mértékegysége a gray), amely megfelel 1 kg anyag által elnyelt 1 J sugárzási energiának (1 Gy = J/kg), míg a dózisegyenérték SI származtatott egysége a sievert, ami a biológiai hatása alapján értékel a ionizáló sugárzási mennyiség. A dózisegyenérték a grayben mért elnyelt dózis és egy súlyozó ténnyező szorzataként kapható meg, ami függ a sugárzás típusától, egy további, a sugárzást elnyelő szövet fajtától függő súlyozóténnyezővel pedig a biológiai hatásra jellemző effektív dózist kapjuk (egysége szintén Sv). [41]

A biztonság kérdésköréhez radiológiai káreseménynél több elem is kapcsolódik. [42] A determinisztikus (küszöbdózishoz köthető) hatások elkerülése, valamint a sztochasztikus (küszöbdózishoz nem köthető) hatások csökkentése mind a beavatkozó állomány, mind pedig a lakosság tekintetében elsődleges feladat. A káreset korai szakaszában a tűzoltásvezetőnek gondoskodnia kell a megfelelő védőeszközök meghatározásáról (egyéni védőeszközök, teljes légzésvédelem mellett), dózismérő használatáról, valamint jódtalbeta alkalmazásáról – szükség szerint. [3]

A beavatkozók sugárterhelését folyamatosan méni kell, és arról nyilvántartást kell vezetni. A sugárvédelmi irányelvek betartásával kell a káreseteket felszámolni, azaz a gyakorlatban indokolt beavatkozás esetén a sugárzási szint lehetőség szerinti legalacsonyabban, de mindenfézen a dóziskorlátok alatt tartásával. A nukleáris veszélyhelyzetben vagy sugárforrás jelenlétében történő tűzoltói eseménykezelés alapvető szabálya, hogy feltételezni kell a radiológiai kockázat jelenlétéét, ameddig méréssel meg nem győződünk az ellenkezőjéről. Szakmai belső szabályozó előírja azokat a zónahatárokat, amelyek meghatározása, és kialakítása indokolt radiológiai veszélyhelyzetek kezelésekor. A 6.számú táblázatból az elsődleges feladatként kialakítandó veszélyes zóna határait tudja meghatározni a tűzoltásvezető a KML kiérkezésétől. Gondoskodnia kell a be-, és kiléptetési pontok létrehozásáról is, hogy csak ellenőrzött útvonalon lehessen megközelíteni a helyszínt.

72 6/2016. (VI. 24.) Tűzoltás-taktikai és a Műszaki Mentési Szabályzat
Ez a nyilvántartás, de az esetleges dekontaminálás miatt is elengedhetetlen. Ahol 20-100 μSv/óra dózisteljesítmény közötti értéket mérünk, azt átmeneti zónaként kezeljük, itt nem hozhatunk létre vezetési pontot, nem használhatjuk felvonulási területként sem és szintén gondoskodnunk kell a beléptetési pontok létrehozásáról.

<table>
<thead>
<tr>
<th>Helyzet leírás</th>
<th>Kezdeti belső lezárt terület (a veszélyes zóna határa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az első döntés alapján – szabadban</td>
<td></td>
</tr>
<tr>
<td>Potenciálisan veszélyes árnyékolatlan vagy sérült sugárforrás.</td>
<td>30 m sugarú kör</td>
</tr>
<tr>
<td>Potenciálisan veszélyes sugárforrásból származó kiszóródás.</td>
<td>100 m sugarú kör</td>
</tr>
<tr>
<td>Potenciálisan veszélyes sugárforrással kapcsolatos tűz, füst, robbanás.</td>
<td>300 m sugarú kör</td>
</tr>
<tr>
<td>Felrobbant vagy fel nem robbant feltételezett bomba.</td>
<td>400 m vagy ennél nagyobb sugarú kör</td>
</tr>
<tr>
<td>Az első döntés alapján – épületben</td>
<td></td>
</tr>
<tr>
<td>Potenciálisan veszélyes sugárforrással kapcsolatos anyagszóródás, árnyékolássérülés vagy elvesztés</td>
<td>Érintett és szomszédsági területek (bele értve az alatta és fölötté lévő szinteket).</td>
</tr>
<tr>
<td>Potenciálisan veszélyes sugárforrást érintő tűz vagy egyéb olyan esemény, amely elősegíti a radioaktív anyag terjedését az épületben (pld. a szellőző rendszeren keresztül).</td>
<td>A teljes épület és az épület körüli megfelelő távolság a fenti elvek szerint.</td>
</tr>
<tr>
<td>A távolságok növelése a radiológiai monitorozás alapján</td>
<td></td>
</tr>
<tr>
<td>100 μSv/óra környezeti dózis teljesítmény.</td>
<td>A belső lezárt területet addig növelni, ameddig ez a szint mérhető.</td>
</tr>
</tbody>
</table>

6. számú táblázat: Radiológiai veszélyhelyzet esetén az első beavatkozók feladatai (Forrás: 6/2016. (VI. 24.) Tűzoltás-taktikai és a Műszaki Mentési Szabályzat)

A sugárveszélyes területen a dózisterhelést folyamatosan figyelemmel kell kísérei, mért értékek hiányában pedig csak életmentést vagy a terület lezárását lehet elvégezni [3]. Amennyiben olyan egység érkezik a helyszínre, amely nem rendelkezik sugárzás mérésére alkalmas műszerrel, akkor elsődlegesen 100 méterben kell meghatározni a megközelítési távolságot.

Az elsődlegesen megszerzett információk (a káresetet jelző bejelentő által adott) nem minden esetben tartalmazzák azokat az információkat, amelyekkel a tűzoltói beavatkozások biztonságosan megkezdhetők. Egy közúti balesetnél, amennyiben érintett radioaktív izotópokat szállító jármű is, és sem a sugárzás típusával kapcsolatban nincs információk, sem pedig a dózisterjesítmény nem mérhető, nem hozható érdemi döntés a beavatkozás megkezdésére. Az alapinformáció, miszerint sugárveszélyes a terület (akár közúti balesetnél, 73 radioaktív felületi szennyezettség eltávolítása
akár létesítményben történt), csak arra elegendő, hogy az elsődleges megközelítési távolságot meghatározzuk. Ugyanakkor a tűzoltásvezető alapvető kötelezettsége a beavatkozás biztonságos végrehajtásáról gondoskodni. [2] [33] [34]

Az elsődleges felderítés alapján meg kell tudnia határozni74:

- a szükséges személyi védőeszközöket;
- szükség szerint légzésvédő készülék használatát;
- veszélyeztetett személyek számát;
- az adott és a várható feladatokat;
- az egyértelműen lehatárolható feladatokat, azok területi elhelyezkedése, valamint jellege alapján;
- a védekezésre használható módozatok arányát:
 1. időkorlát
 2. távolsági korlát
 3. árnyékolasási lehetőségek;
- az alkalmazható eszközöket és oltóanyagokat.

A károsító hatások akár rövid időn belül jelentkezhetnek, dózistarjítását és sugárzástípus függvényében. A besugárzás után azonnal megkezdődnek azok a folyamatok a szervezetben, amelyek akár évekig is eltarthatnak. Első lépésben (10^{18} másodperc) a fizikai fázis alatt a szervezet sejtjeiben lévő atomok gerjesztett állapotba kerülnek, majd a fizikai-kémiai fázisban (kb.10^{-15} másodperc) szabadgyökök keletkeznek, amelyek hatást gyakorolnak a még ép sejtekre. Ezután zajlik a kémiai-biokémiai fázis, amikor a sejtekben további biokémiai folyamatok, enzim- és anyagesere változások zajlanak, végül a biológiai fázis következik, amely akár évekig is eltarthat Alapvetően szövetszerű, szervi elváltozások alakulnak ki, de számolni kell a sugárzás mutagén hatásával is, amely a reprodukciós képességben, az utódok szervezetében érvényesül.75 Bizonyos küszöbdózis (100 mSv) alatt nem jelenik meg közvetlen akut hatás, ilyenkor csak sztochasztikus hatásokról beszélhetünk, amelyek valószínűsége hosszú időskálán nő a dózissal. A determinisztikus küszöb felett azonban a dózissal nő a tünetek súlyossága, szélsőségesen nagy dózisok akár napokon-

74 39/2011. BM rendelet alapján a szerző

75 Dr. Berek Tamás okl. mk. örgy.: Honvédelmi Ismeretek – ABV (CBRN) Védelmi Alapismeretek jegyzet, Zrínyi Miklós Nemzetvédelmi Egyetem, Budapest 2010.
heteken belül halált is okozhatnak (ez igen ritka, egy közúti szállítási baleset során például nehezen elképzelhető, hogy egy beavatkozó ekkora dózist szenvedjen el). [41]

Dóziskorlátok a mentésben részt vevő szervezeteknél
A sugárveszélyes területen történő tűzoltói beavatkozás során is szükséges alkalmazni a sugárvédelem három legfőbb alapelvét: indokoltság, optimálás, dóziskorlátoszás. Az indokoltság elve alapján a beavatkozás csak akkor végezhető el, ha az azzal járó haszon meghaladja a kockázatot, miközben az ALARA elven megfelelően optimálni kell a védelmet, azaz a beavatkozás során a beavatkozók sugárterhelését az ésszerűen elérhető legalacsonyabban kell tartani, és a rendeletben meghatározott dóziskorlátokat be kell tartani. Fontos, hogy a veszélyhelyzeti korlátok nem hétkörnapi, hanem rendkívüli helyzetekre vonatkoznak, és a rendelet sem éves korlátokat ad meg, hanem csak vonatkoztatási szinteket ír elő a veszélyhelyzet-kezelés idejére, ami azonban nem kötelezően betartandó, csak ajánlott. A jogszabály elsődlegesen azt céllozza meg, hogy a veszélyhelyzeti sugárterhelés lehetőleg ne haladj meg a szokásos munkavállalói éves dóziskorlátokat. Azonban, ha ez a veszélyhelyzet jellege miatt nem lehetséges, akkor alapesetben a vonatkoztatási szint 50 mSv effektív dózis, amely súlyos következmények megelőzését célzó indokolt esetben 100 mSv-re növelhető, de életmentés esetén 250 mSv-ig is kiterjeszthető (ez már elvileg túl van a determinisztikus küszöbdózison). Végső soron pedig semmiképpen nem lehet több, mint 500 mSv a teljes veszélyhelyzet időszakára, tulajdonképpen ez az egyetlen kötelezően betartandó dóziskorlát veszélyhelyzeti munkavállalóknál. [33] [34] [43]

Munkavégzés sugárforrás jelenlétében, ellenőrzött körülmények között
Az emberi szervezetet érő mesterséges sugárterhelés ellenőrzött keretek közötti tartása nem ismeretlen fogalom az iparban. Az atomerőművek (Paksi Atomerőmű Zrt.) dolgozói is együtt élnek azokkal a szigorú szabályokkal, amelyek biztosítják, hogy sugárzó anyag ne kerüljön ki a létesítményből. A sugárzó anyag kikerülése nemcsak a kivitelt jelenti az ellenőrzött zónákbelől és az atomerőmű területéről, hanem a munka közben szennyeződött eszközök felszerelése, és munka közben szennyeződött elérhetetlent olyan zónák kialakítása, amelyek biztonsági kockázata eltér a normál állapotból. Ellenőrzött körülmények között végzett sugárterheléssel járó munka szervezése bonyolult folyamatot jelent, amelyet az

76 félületek szennyeződése olyan anyagokkal, amelyek ionizáló sugárzásra képesek (szerző a 487/2015. Korm. rendelet alapján)

4. számú kép Elektronikus operatív doziméter 100 mSv dóziskorlát riasztási jelzésére beállítva (készítette: Rácz Sándor Németország Drezda 2017.)

Megkülönböztetünk tehát tervezett és nem tervezhető mértékű sugárhatásokat, amelyekkel kapcsolatban rövidtávra és hosszútávra kiható hatások jelentkezhetnek. A
determinisztikus hatásokhoz köthető dózisküszöb értékek, de a sztochasztikushoz nem. (11. ábra) Előbbiek a küszöbdózis felett mindenféle jelentkeznek, és a sugárbetegség tüneteinek súlyossága függ az elszennedett dózis nagyságától. Utóbbi akkor jellemző, amikor a determinisztikus küszöbdózis alatti dózisok az idő előre haladával összeadódva váltanak ki valamilyen degeneratív elváltozást (legtöbbször daganat), aminek valószínűsége nő a növekvő dózissal. Mindkét hatás ellen védekeznünk kell, hiszen az egészségre gyakorolt hatása egyértelműen jelentkezni fog az elnyelt dózis függvényében, de egyénenként különböző módon, különböző időben.

11. ábra Sztochasztikus, és determinisztikus hatások alakulása az elnyelt dózis függvényében. [44]

3.2.3. A káreset felszámolásának alapelvei

A tűzoltási, és műszaki mentési események kezelésekor védeni kell a beavatkozókat, és a lakosságot a determinisztikus hatásoktól, és csökkenteni kell a sztochasztikus hatásokat. A jogszabályban, és a belső szabályzóban meghatározott effektív dóziskorlátokat nem szabad átlépni [19][43]. Az esetleges sugárszennyezést fel kell deríteni, a dekontaminálást végre kell hajtani.

77 olyan sugárhatság, amelynek dózisküszöb-értéke van, amelyik felett a hatás súlyossága a dózissal növekedik. Ha az emberi szervezetet egy bizonyos küszöbdózisnál nagyobb dózis éri, rövid idő után megjelennek az ún. sugárbetegség tünetei, melynek súlyossága a besugárzás mértékétől függ (6/2016 BM OKF Utasítás 1.sz melléklet)

78 olyan sugárhatság, amelynek nincs küszöbdózisa, előfordulási valószínűsége arányos a dózissal, súlyossága azonban független attól. Jellemzője, hogy csak évekkel, vagy akár nemzedékekkel később jelentkezik. Ide tartoznak a sugárzás által kiváltott rákos megbetegedések, és a mutációk hatásaként jelentkező genetikai hatások 6/2016 BM OKF Utasítás 1.sz melléklet)
Sugárvédelmi alapelvek:

„A beavatkozók sugárterhelésével járó tevékenységeknek indokoltnak kell lenniük, és minden szükséges intézkedést – ideértve az egyéni és kollektív védelem biztosítását – meg kell tenni sugárterhelésük optimalizálása érdekében.”

„A beavatkozók sugárterhelésének nyilvántartásáról gondoskodni kell. A veszélyhelyzet megszűnését követően a kapott egyéni dózisról és az ezzel összefüggő egészségügyi kockázatról a beavatkozókat tájékoztatni kell.”

A sugárveszélyes tevékenység csak addig folytatható indokolhatóan, amennyiben a várható haszon mind a társadalomra, mind az egyénre nézve nagyobb, mint az elszennyedett hátrány.

Az optimálás elve (ALARA) szerint olyan alacsonyan kell tartani a sugársszinteket, amennyire az lehetséges. A sugárterhelést — az elszennyedő személyek számának korlátozása mellett—, a legrövidebb ideig, a sugárforrától lehető legtávolabb végzett munkával, illetve a sugárforrásnak megfelelő árnyékolással kell alacsonyra tartani. A dóziskorlátok betartása a kormányrendelet szerint a veszélyhelyzet elhárítás idejére értendő vonatkozási szinteket jelenti.(7-8 táblázat.)

<table>
<thead>
<tr>
<th>Dóziskorlátok/év</th>
<th>Dózis (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakossági</td>
<td>1</td>
</tr>
<tr>
<td>Természetes</td>
<td>2,5</td>
</tr>
<tr>
<td>Foglalkozási</td>
<td>20</td>
</tr>
<tr>
<td>Beavatkozó</td>
<td>50</td>
</tr>
<tr>
<td>Determinisztikus küszöbdózis</td>
<td>100</td>
</tr>
<tr>
<td>Visszahívási</td>
<td>100</td>
</tr>
<tr>
<td>Jódprofilaxisz tartozó cselekvési</td>
<td>100</td>
</tr>
<tr>
<td>Életmentés</td>
<td>250</td>
</tr>
<tr>
<td>Akut sugárbetegség</td>
<td>1000</td>
</tr>
<tr>
<td>Félhalálos</td>
<td>4000</td>
</tr>
<tr>
<td>Halálos</td>
<td>7000</td>
</tr>
</tbody>
</table>

7. számú táblázat Dóziskorlátok a 487/2015 Korm. rendelet alapján [43] (készítette Rác Ránford)

80 Országos Nukleárisbaleset-elhárítási Intézkedési Terv
81 487/2015 (XII.30.) Kormányrendelet az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési, jelentési, és ellenőrzési rendszerről
82 „Veszélyhelyzetben a baleset következményeinek elhárításában részt vevő személy sugárterhelése nem haladhatja meg az 50 mSv effektív dózist.” OBEIT dóziskorlátok
83 „Törekedni kell arra, hogy a sugárterhelés a 100 mSv effektív dózist, az életmentésben részt vevő személy sugárterhelése a 250 mSv effektív dózist ne haladja meg.” OBEIT dóziskorlátok

88
Sugárzási szintek	Dózisteljesítmény (Gy/h vagy Sv/h)
Háttérsugárzási szint | 100 n
Figyelmeztetési szint | 250 n
Mentesítési határérték | 300 n
Riasztási szint | 500 n
Külső lezárt terület határa | 20 μ
Belső lezárt terület határa | 100 μ
Védőfelszerelés felvételének szintje | 100 μ
Extrém szint | 100 m
Tilos szint | 1000

3.2.4. A méréshez szükséges sugárfizikai ismeretek

A dóziskorlátok betartása megkerülhetetlen eleme az ilyen típusú beavatkozásoknak. A mérés általi felderítés témaköre túlmutat az általános kiképzettségen. Ahhoz hogy képet alkossunk milyen hátrányból indulunk amennyiben ezt a típusú képzést nem kapjuk meg, a sugárfizikai alapismeretek áttanulmányozása szükséges. Az atomok módosulatai a radioaktív izotópok, amelyek eltérő tömegszámmal rendelkeznek. Energiaegysélyen törekednek, ezért folyamatos atommag átalakulásokkal (bomlásokkal) igyekeznek megszabadulni a gerjesztett állapottól. A bomlásokkal új anyagok is keletkeznek, és különböző fajtájú ionizáló sugárzást (9. táblázat) is bocsánatának ki, amelyek különböző minőségük miatt, másképpen hatnak az élő szervezetre. (10. táblázat) Az atomok radioaktív módosulatai, különböző magátalakulások után elérik azt az állapotot, amikor az aktivitásuk, olyan mértékben lecsökken, hogy elérik a természetben előforduló állapotukat. Ez a folyamat percekben is mérhető, de milliárd években is. A beavatkozó tűzoltók szempontjából az adott időpillanatban mérhető aktivitás a mérvadó.

Aktivitás = bomlások száma(beutésszámn)/eltelt idő, Bq (becquerel) = bomlás/sec=cps (counts per secundum) Felületre: Bq/cm² = 10000 Bq/m²[33] [34]

A dózisteljesítmény pedig az időegységre vetített dózis, melynek használatos mértékegysége Gy/h vagy Sv/h.
<table>
<thead>
<tr>
<th>Sugárzások</th>
<th>Típusa</th>
<th>Fajtaí</th>
<th>Példa</th>
</tr>
</thead>
<tbody>
<tr>
<td>α (alfa sugárzás)</td>
<td>részecskesugárzás</td>
<td>ionizáló</td>
<td>Pu-238; Po-210; Am-241(α+γ)</td>
</tr>
<tr>
<td>β (béta sugárzás)</td>
<td>részecskesugárzás</td>
<td>ionizáló</td>
<td>H-3; C-14; Sr-90</td>
</tr>
<tr>
<td>γ (gamma sugárzás)</td>
<td>elektromágneses</td>
<td>ionizáló</td>
<td>K-40; Cs-137(γ); Am-241(α+γ); Co-60(γ)</td>
</tr>
<tr>
<td>n° (neutron sugárzás)</td>
<td>részecskesugárzás</td>
<td>ionizáló</td>
<td>Am-Be</td>
</tr>
<tr>
<td>X (röntgen sugárzás)</td>
<td>elektromágneses</td>
<td>ionizáló</td>
<td>röntgenső</td>
</tr>
<tr>
<td>UV sugárzás</td>
<td>elektromágneses</td>
<td>nem ionizáló</td>
<td></td>
</tr>
<tr>
<td>fény sugárzás</td>
<td>elektromágneses</td>
<td>nem ionizáló</td>
<td></td>
</tr>
<tr>
<td>hősugárzás</td>
<td>elektromágneses</td>
<td>nem ionizáló</td>
<td></td>
</tr>
<tr>
<td>elektronszög</td>
<td>elektromágneses</td>
<td>nem ionizáló</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugárzások</th>
<th>Minőségi faktorok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Röntgen és gamma</td>
<td>1</td>
</tr>
<tr>
<td>Elektronok, pozitronok és műonok</td>
<td>1</td>
</tr>
<tr>
<td>Neutronok < 10 keV</td>
<td>5</td>
</tr>
<tr>
<td>Neutronok 10 keV-100 keV</td>
<td>10</td>
</tr>
<tr>
<td>Neutronok 100 keV-2 MeV</td>
<td>20</td>
</tr>
<tr>
<td>Neutronok >2 MeV</td>
<td>10</td>
</tr>
<tr>
<td>Protonok > 30 MeV</td>
<td>5</td>
</tr>
<tr>
<td>Alfa részecskék</td>
<td>20</td>
</tr>
</tbody>
</table>

9. számú táblázat Sugárforrások csoportosítása. (készítette Rácz Sándor, Finta Viktória előadása alapján)

A sugárveszélyes környezetben végzett munka problematikáját tovább bonyolítja az inkorporációval (belégzéssel, lenyeléssel, seben keresztül) a szervezetbe bejutott sugárforrás által végt kapott hatás utólagos felmérése, amelynek a mértékét egyéni operatív doziméterrel sem tudjuk előre meghatározni. Az emberi test szövetét nem egyforma arányban károsítja a sugárzó anyagból elnyelt dózis. A testszövetek által elszenvedett károsító hatáshoz kapcsolódó fontos fogalmak többek között az effektív dózis, az egyenérték dózis, és az elnyelt dózis. A különböző sugárzás típusoknak különböző a biológiai károsító hatása.

<table>
<thead>
<tr>
<th>Sugárzások</th>
<th>Minőségi faktorok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Röntgen és gamma</td>
<td>1</td>
</tr>
<tr>
<td>Elektronok, pozitronok és műonok</td>
<td>1</td>
</tr>
<tr>
<td>Neutronok < 10 keV</td>
<td>5</td>
</tr>
<tr>
<td>Neutronok 10 keV-100 keV</td>
<td>10</td>
</tr>
<tr>
<td>Neutronok 100 keV-2 MeV</td>
<td>20</td>
</tr>
<tr>
<td>Neutronok >2 MeV</td>
<td>10</td>
</tr>
<tr>
<td>Protonok > 30 MeV</td>
<td>5</td>
</tr>
<tr>
<td>Alfa részecskék</td>
<td>20</td>
</tr>
</tbody>
</table>

10. számú táblázat Minőségi faktorok különböző sugárzásokra (készítette Rácz Sándor, Pátzay György előadása alapján)

86 sugárforrás jelenlétére okkal lehet számítani mind a technológiából, mind pedig a bekövetkezett szituációból adódóan (szerző)
87 effektív dózis: külső és belső sugárterhelés következtében a test összes szövetét és szervét érő egyenértékdozisoknak a wT testszöveti tényezőkkel súlyozott összege; az effektív dózis jele E, mértékegysége Sievert (Sv) (487/2015 Korm.rendelet)
88 egyenértékdozis: a T szövetet vagy szervet érő különböző típusú és minőségű sugárzásoknak a T szövetre vagy szerve függetlenül elnyelt dózisai megfelelő sugárzási minőségéntényezőkkel súlyozott összege; az egyenértékdozis jele H, mértékegysége Sievert (Sv) (487/2015 Korm.rendelet)
89 elnyelt dózis: az egységnyi tömegű anyagban elnyelt sugárzási energia; az elnyelt dózis jele D, mértékegysége a Gy; egy gray egy joule per kilogrammnak felel meg: 1 Gy = 1 J/kg; (487/2015 Korm.rendelet)
Ezek alapján van lehetőségünk meghatározni az adott személyt ért sugárzás hatásait. Mindehhez természetesen mért eredmények szükségesek a teljes munkavégzés alatt. [33] [34]

A sugárzások méréséről általában

A sugárforrások mérésére használt műszerek, valamint azok elvi működése nem témája a dolgozatnak, azonban a mérőműszerek alapvető képességének a meghatározásához fontosak.

A mérés, a radioaktív sugárzás minőségének, mennyiségének, energiájának és energia eloszlásának mérését is jelenti. A radioaktív sugárzást a környezetével létrehozott kölcsönhatások eredményei alapján észleljük, mérjük. A mérőrendszer két fő részből, a detektorból és a mérőberendezésből áll. A sugárzás a detektorral lép kölcsönhatásba, a mérőberendezés a kölcsönhatás eredményeként keletkező „jelet” mérésre alkalmassá teszi és méri.\(^{90}\)

A radioaktív sugárzást az anyag és a sugárzás kölcsönhatásai alapján közvetlenül, vagy közvetve lehet érzékelni. Az alfa- és a béta-sugárzások nagy fajlagos ionizáló képességük következtében közvetlenül észlelhetők. A gamma-, a röntgen- és a neutron-sugárzás a gyakorlatban közvetve érzékelhető. A közvetett észlelés a kölcsönhatási folyamatokban keletkező elektromosan töltött részecskék közvetítésével történik.\(^{45}\)

5.számú kép Sr-90 izotóp beütésszám mérése Spectech szcintillációs detektorral. (Készítette: Rácz Sándor)

\(^{90}\)Makovecz Gyula Dozimetric mérések Paksi Atomerőmű Zrt. Oktatási Főosztály jegyzet
A radioaktív sugárzás detektálására a gyakorlatban legelterjedtebben az alábbi folyamatokat alkalmazzák:

Ionizáció: A gázokon és a szilárd anyagokon (pl.: félvezetőkön) áthaladó sugárzás az intenzitás mértékével arányosan ionizálja az atomokat (5. számú kép).

![Ionizáció](image)

6.számú kép Ionizációs kamrás „Tolldoziméter” (Készítette: Rácz Sándor)

Lumineszcens hatás: Néhány anyagnak olyan tulajdonsága van, hogy az abszorbeált radioaktív részecskék hatására fényfelvillanás (szcintilláció) keletkezik benne (4. számú kép).

Az ionizáció alapuló sugárzás észlelése történhet gázionizációs, vagy félvezető detektorokkal. A lumineszcens hatáson alapuló észlelésre úgynevezett szcintillációs számlálókat alkalmazunk, ezenkívül a lumineszcencia jelenségét használják fel a termolumineszcens dozimetríában is.\(^9\)

![Lumineszcens hatás](image)

12. ábra Sr-90 izotóp távolságfüggésének mérése szcintillációs detektorral (Készítette: Rácz Sándor, saját mérés alapján)

\(^9\) Makovecz Gyula Dozimetriai mérések Paksi Atomerőmű Zrt. Oktatási Főosztály jegyzet
A felkészítés tekintetében elmondható, hogy olyan **modellértékű** gyakorlati helyszínt kialakítani, amely által a valósághoz hasonló gyakorlatot tudunk lefolytatni, csak laboreszközök igénybe vételével lehetséges. Izotóp minták szükségesek a mérési gyakorlatok lefolytatásához, és különböző árnyékolási lehetőségek, amelyekkel a tüzoltó állomány érzékelni, és értelmezni tudja a védekezés lehetőségeit. A védelem formáit (idő, távolság, és árnyékolás) kombinálta kell gyakorolni, mégzhozzá a munkavégzés alatt. Ezek kombinációjával — mérések által — válhat készségszintűvé a radioaktív izotópok környezetében végrehajtott szakszerű, optimális védelem kialakítása (12. számú ábra). Saját tapasztalatom alapján elmondhatom, hogy amíg valaki nem mért sugárzó anyag környezetében, addig nehezen tud fogalmat alkotni a folyamatról. Az általam lefolytatott mérések laboratóriumi körülmények között92 (radioaktív izotópok távolságfüggése, sugárrétegnek árnyékolása, aktivitás és felezési idő mérése, háttérsugárzás mérése) segítségével voltak a téma sugárfizikai alapjainak a megismerésében, valamint a gyakorlatban elvégezhető mérések értelmezésében. A katasztrófavédelem szakembereinek ilyen irányú képzése, különösként az izotóp laborokban, valamint a mérések által nyert eredmények értékelésére segíthet a károsellátásunk biztonságosabbá tételében.[24]

3.2.5. Védekezés módszerei

A sugárrétegnek környezetében végzett munka alkalmával háromféle módon védekezhetünk a sugárzás hatásai ellen:

- Távolsági védelem
- Idővédelem
- Árnyékolás

Mindhárom esetben kizárólag mért értékekre támaszkodhatunk. Az elsőként érkező tüzoltó egészsége beavatkozása közvetlen kockázatot rejt magában a látens veszélyek miatt, amelyre semmilyen érzékszervünk nem figyelmeztet minket. Operatív doziméter nélkül a felderítést sem lehet elkezdeni, amely után a mért értékekre támaszkodva a beavatkozás lépései meg lehetne tervezni.

92 Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Izotóp labor
Távolsági védelem, idő védelem

A távolsági védelem az idővédelemmel együtt a legegyszerűbben alkalmazható. Fordított arányosság van a dózisteljesítmény és a rendelkezésünkre álló időtartam tekintetében, mivel a dózis az idővel egyenesen arányos. Mindemellett meg kell említeni, hogy a távolság változásával a dózis nem egyenesen arányos, hiszen a dózisteljesítmény négyzetesen csökken a távolság növekedésével. Tehát sugárveszélyes tevékenység közben célszerű minél nagyobb távolságot tartani a forrástól és/vagy minél rövidebb ideig a közelében tartózkodni. A kettő azonban összefügg, ha technikai okok miatt nem tudunk elég távol menni a forrástól, akkor az időfaktort szükséges lecsökkenteni. Ez egy közúti balesetnél dolgozó tűzoltónál azt jelenti, hogy a mért érték függvényében — mivel akár közvetlen közelről kell életmentés céljából roncsvágást végre hajtania — előfordulhat, hogy csak percekben mérhető a munkavégzéssel történő munka. Ez a tény indokolja, hogy már a kezdeti erő, eszköz kalkulációjánál nagy létszámmal kell tervezni, mért értékek hiányában pedig szinte lehetetlen. [46]

Árnyékolás

Az árnyékolás lehetőségeit az alábbi ábra (13. ábra) szemléltei, ahol illusztrálva figyelhetjük meg az alkalmazott anyagok hatékonyságát a sugárzó anyag ellenében. Ebben az esetben különösen indokolt a laboratóriumi körülmények közötti árnyékolás modellezése, mert a sugárforrás fajtájától, aktivitásától, és energiájától nagyban függ az alkalmazott anyagok mérete, és sűrűsége.

13. ábra Árnyékolási lehetőségek sugárzásnál (készítette: Rácz Sándor)
Alfa sugárzó esetében akár néhány (kb. 10) centiméter levegőréteg is elég lehet, de béta sugárzónál is alkalmazhatunk ilyen típusú védelmet (kb. 2 méter), viszont gamma, és röntgen sugarak, valamint neutronok jelenlétében csak fizikai korlátok jöhetnek szóba.

6-7. számú kép Sr-90 izotóp dózisteljesítményének mérése árnyékolás nélkül (bal oldali kép) és 0.25 cm-es 7367 mg/cm³ sűrűségű ólomlemezzel árnyékolva (jobb oldali kép)

Az árnyékolás hatékonyságának demonstrálása nem könnyű feladat megfelelő vizsgálati eszközök nélkül. Egy modell kialakítása, — már csak az ellenőrzött körülmények miatt is —amely által megéthetjük a folyamatot, laboratóriumi környezetet igényel. A szükséges alapismeretek birtokában megtapaszthatjuk a fizikai árnyékolás adta lehetőségeinket, amelyek később veszélyhelyzetben felhasználhatunk.(6-7. kép)

Szennyezettség (kontamináció)

Nagyban megnehezíti a beavatkozók munkáját, amennyiben a sugárforrás burkolata megsérül, nyitottá válik, a radioaktív anyag kiszóródik (baleset, robbanás miatt), a levegőbe kerül (égés füstje), mert intézkedni kell a szennyezett területek dekontaminálására. [3] Ehhez természetesen szintén szükség van mért eredményekre, azaz olyan felületi szennyezettség-mérő eszközökre, amelyeket speciálisan ilyen igénybevételekre terveztek. (8. kép)

8.számú kép Kontamináció/Szennyeződés Mérésére alkalmas COMO 170 típusú műszer

(Forrás: http://www.graetz.com/como-170+M5c7c9be568f.html)

93 Rácz Sándor saját fotói, készült: Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki tanszék Izotóp laborban
Egy ilyen, egyértelműen veszélyesnek ítélt beavatkozás sem riasztja el a tűzoltókat a beavatkozás megkezdésétől, különösen, ha emberélet forog közvetlen veszélyben. Igen nagy a felelőssége a vezetőnek, amikor kiadja a parancsot a beavatkozás megkezdésére, a felderítést követően. Mért adat hiányában, sugárveszélyes területen ez mindenkiépén morális kérdés is egyben, nemesak szakmai. Az életveszélyben lévő sérült (közúti balesetnél) meglepésére irányuló erőfeszítés könnyen torkolhat tragédiába, akár rövid időn belül. A beszorult sérült kiszedezése egy csoncolódott autókarosszériából több mint egy órára vehet, miközben a beavatkozók ki vannak téve ionizáló sugárzásnak. A védekezés eszközei csak akkor jöhetnek szóba, amennyiben a szükséges ismeretekkel rendelkezünk az alkalmazásuk lehetőségeiről. Itt merül fel a képzettségi szint vertikális kiterjesztése az elsőként beavatkozók tekintetében. A szakmai ismeretekben túl indokolt, olyan veszélyforrásokra is megoldási lehetőséget kidolgozni, amelyek csak ritkán fordulnak elő a tűzoltó életében. A kutatás szempontjából fontos elem volt, hogy a szakmai szabályozók feltételezik, hogy a beavatkozás kezdeti időszakában is rendelkezésre áll szakember (sugárvédelmi képzettséggel, mérőeszközzel), aki segít meghozni az elsődleges döntéseket.

Felderítés sugárveszélyes területen

Leginkább az információ hiánya az, amely a tűzoltásban részt vevők, főleg a tűzoltásvezetők számára problémát jelent, hiszen döntések meghozatalához vannak hozzászokva, és ehhez megfelelő felderítéssel a szükséges információkat rendszerint be is gyűjti.

A tűzoltói tevékenységet elsőként szabályzó BM rendelet alapján a felderítésnek alkalmasnak kell lennie az alábbi folyamatok szabályozásához szükséges információk beszerzésére:

```
  a) az adott és a várható helyzet felmérésére,
  b) a helyes megoldás megválasztására és a szükséges feladatok meghatározására,
  c) a tűzoltás egyes szakaszai során felmerülő speciális feladatok megoldására,
  d) a beavatkozók biztonsága érdekében a szükséges övintézkedések meghozatalára.```

A felderítést folyamatosan végre kell hajtani a káresemény kezdetétől annak befejezéséig, ezért szükségszerűen meg kell különböztetni a beavatkozás megkezdéséhez szükséges felderítést, valamint a beavatkozás alatti, azaz a felszámolás alatti felderítést. Ezek

---

csak abból a szempontból különülne el, hogy a beavatkozás megkezdéséhez szükséges felderítéskor az elsődleges feladatokhoz gyűjtünk információt, míg a felszámolás alatt további veszélyeztető tényezőkről, más veszélyeztetett területekről, valamint a beavatkozás alakulásáról, illetve a megváltozott körülményekről szerzünk információkat.[2]

A biztonságos munkavégzés feltételeinek kialakítása kárhelyszínen a tűzoltásvezető feladata95, de láthatjuk, hogy alapvető információk nélkül nem fog, és nem is tudna döntéseket hozni. A katasztrófavédelem felkészültsége ezen a téren részletes, a KML és a KSE egységek rendszerbe állításával a radiológiai veszélyhelyzetek kezelése is biztonságosabban vált, azonban az azonnali rendelkezésre állás (az elsőként kiérkezett kísérőkkel egyidőben) még nem megoldott országszerte. Az elsőként beavatkozó tűzoltók, radioaktív sugárzás mérésére alkalmas műszerekkel történő ellátását, figyelembe véve a veszély rövid idő alatti károsító hatásait, indokoltan látom.

Mérési lehetőségeink operatív szinten

A KML-re felmályhúzott és rendszeresített műszerek segítségével mérhetővé válnak azok a mennyiségek, amely adatok nélkül, lényegében nem tudjuk a beavatkozásunkat elkezdeni. A sugárszint (dózisfelületintensitást) és kontamináció (felületi szennyezettség) mérésére alkalmas eszközök a katasztrófavédelem területi szervezeti egységéhez tartozó KML-eken (20 db) kívül csak a Katalógus- és Kontamináció-Widelek Egyesület (KSE, 7 db Magyarországon) találhatóak meg, kiegészítve egyéb, például terjedéssűrűsítésre felhasználható mérőműszerekkel. A KML-eken található, Gamma Műszaki Zrt. által gyártott KML-eken található, Gamma Műszaki Zrt. által gyártott dízisfelületintensitást, illetve dízis azonnali mérésére, valamint alfa- és betá- felületi szennyezettség mérésére. Az IH-95 műszer kettős funkciója miatt használható kontamináció, és dízisfelületintensitást mérésére is. A felszerelés tartalmazza a dízisfelületintensitást, méréshez szükséges dozisfémet, amelyhez a szükséges egységet képez. A műszer hordtásával ből kívül felületi szennyezettség mértékére példa. Az IH-95 két detektorral van ellátva, valamint lehetőség nyílik — a beépített GPS segítségével — a pontos területi beazonosításra is. Ezen kívül lehetőség van a mérési idő, valamint a riasztási szint beállítására is, és az adatok memóriakártyán való tárolására is. A személyi dízismérésre, azaz a beavatkozókat érő egyenértékű dízis monitorozására elektronikus dozimétert használnak, amelynek előnye, hogy kijelzi a dízist, ugyanakkor adatrögzítési

95 39/2011. (XI.15.) BM rendelet A tűzoltási és műszaki mentési tevékenységének általános szabályairól-a tűzoltásvezető kötelezettségei
funkciója is van a későbbi kiértékelés érdekében, továbbá előre beállított dózis vagy dózisteljesítmény esetén a doziméter riasztást ad a használójának. [47], [48]

**Nemzetközi példák a sugárforrások mérésére tüzoltóságokon**

Az Egyesült- királyságban, a tűzoltó gépjárműfescsendőkön található a sugárzás mérésére alkalmas operatív elektronikus doziméter, amely kiegészítséve egy személyi dózismérővel mind a felderítésben, mind pedig a személy sugárterhelésének a rögzítésében (személyi dózismérő) használható (9-10. számú kép).

9-10. számú kép Személyi dózismérő, és elektronikus személyi doziméter egy gépjárműfescsendőn Angliában (Készítette: Pántya Péter)

Németországban is található a tűzoltó-parancsnokságokon rendszeresített, tűzoltógépjárműfescsendőre málházott— sugárfelderítéshez használható — mérőműszerek (11-12. számú kép).

11-12. számú kép Sugárfelderítő készlet, és személyi dózismérő Feuerwehr Aschaffenburg (Németország) (készítette: Rácz Sándor 2017)

Az ausztriai Eisenstadtban található önkéntes tűzoltókat képző intézményben (Landesfeuerwerschule) szintén része a tűzoltók felkészítésének a sugárzó anyag mérésére használható mérőműszerek kezelésének oktatása (13-14. számú kép).
3.2.6. Szervezési kérdések sugárveszélyes területen

Mérések után, a sugárzó izotópok környezetében lehetőségünk van az időkorlátokat meghatározni, és a feladatot végzőket a dózisküszöb elérésekor lecserélni, amelynek egyik feltétele létszámbeli, a másik feltétele képzettség- és gyakorlatfüggő. Fontos tehát a beavatkozók képesség szerinti elosztása az egyenletes minőségű munkavégzés érdekében, különösen valamilyen speciális tevékenység, például veszélyes anyag környezetében, légzésvédő eszközök viselésével, vagy életmentés esetén.

További kérdés a létszámigény meghatározása az alaperő tekintetében, hogy a kezdeti forrásokat (különösen létszám tekintetében) a jelenlegi szint felett szükséges meghatározni. A védelem egyik formája az időkorlát betartása, amely csak akkor valósítható meg, ha azonnal (a riasztás kiadásakor) tartalékozt szervezünk a dóziskorlátok megtartása érdekében. A katasztrófavédelem műveletirányításával kapcsolatos feladatokat szabályozó BM OKF Intézkedés⁹⁶, a radioaktív anyagok jelenléte, vagy feltételezett jelenléte esetén, tűzesetnél maximum 2 és fél raj (16 fő) végrehajtó tűzoltói állományt rendel alaperőként riasztani (12. ábra). Különleges rendeltetésű egységek tekintetében KMSZ a tűzoltás vezetéséhez, oltókontént a feltételezhető speciális oltóanyag igény miatt, vegyi kontént egyéb mentesítési feladatok miatt, kereső szolgálatot személy kereséséhez (csak Budapesten található, kiképzett keresőkutyákat alkalmazó szolgálat), valamint Doktor szolgálatot veszélyhelyzeti egészségügyi ellátáshoz (Budapesten), és természetesen KML-t határoz meg kötelezően riasztani.[49] [50] [51]

⁹⁶ a hivatásos katasztrófavédelmi szervek műveletirányításának rendjéről és a riasztás szakmai szabályairól szóló 16/2016. BM OKF Intézkedés
Műszaki mentés esetén viszont nem határoz meg alaperőt, tehát egy közúti balesetnél vélelmezett radioaktív szennyezettség nem kap különlegesebb létszám vagy eszközgénnyt, mint egy hasonló fajszúlyú más közlekedési baleset.\[52\] A helyszínre érkező erők, nem elegendőek a biztonságos feladat-végrehajtáshoz, mert az intézkedés nem számos a sugárzó anyag következtében fellépő terheléssel, amely a személyek rövidebb időintervallumban történő alkalmazását valószínűsíti. A dóziskorlát eltérévével a végrehajtó személy „kipontozódik”, azaz nem végezhet munkát a veszély- és az átmeneti zónában, csak egyéb támogató jellegű feladatokkal bízható meg. A dolgozatomban ötödik fejezetében feldolgozott radiológiai gyakorlaton (Fővárosi Katasztrófavédelmi Igazgatóság) ilyen típusú védekezést (idővédelem) is alkalmaztak a tűzoltásvezetők, a KML javaslatára.

<table>
<thead>
<tr>
<th>Típus</th>
<th>Kategória I.</th>
<th>Kategória II.</th>
<th>Kategória III.</th>
<th>Kategória IV.</th>
<th>Egész raj</th>
<th>Fél raj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Radioaktív anyag</td>
<td>Ég/Robbanás</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Radioaktív anyag</td>
<td>Füstölés</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Üzem</td>
<td>Radioaktív anyag jelenléte feltételezhető</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Üzem</td>
<td>Radioaktív anyag jelenléte feltételezhető</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

14. ábra A faábrában található valamennyi sugárzó izotóppal kapcsolatos esemény-minősítés (16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke)

A feladatokhoz kapcsolódó létszámigény, elsősorban a tűzoltás, vagy műszaki mentés, az ellenőrző-átéréses pontok működtetése, a mentesítési állomás üzemeltetése, az erők, eszközök rendelkezésre állásának szervezése, a munkavégzési idő nyilvántartásának vezetése, egyéb biztonsági intézkedésekhez kapcsolódó létszámigény, különös tekintettel a váltás megszervezésére.\[53\] \[54\]

A sugárveszélyes tevékenység jellegéből adódóan, valamint a dóziskorlátok betartása szempontjából a riasztási fokozat alulméretezett, mert a faábra által kalkulált erők nem tartalmazzák a beavatkozók cseréjével kapcsolatos szükséges tartalékokat (13. ábra).
A korábban kifejtettek alapján a sugárveszélyes területeket „többsúlypontos” káreseteknek kell tekintenünk, ugyanis feladataink keletkeznek: [8]

1. az élet- vagy tárgymentéssel kapcsolatban
2. a műszaki mentéssel vagy a tűzoltással kapcsolatban (felderítés, előkészítés, végrehajtás akár többszörösen megismétlődve)
3. a létszám szervezésével, létszámcserével kapcsolatban (valamint ennek közvetlen irányításával)
4. mentesítéssel, helyreállítással (időrendben később) kapcsolatban

Ezen elvek alapján, a korábban megállapított terület, és feladat alapú súlyponti erőmeghatározást kiegészítem idő alapú súlyponti erőmeghatározással, mivel a sugárveszélyes területen végrehajtott tűzoltói beavatkozások alkalmával okszerűen számíthatunk sugárterhelésre, amely elleni védekezés egyik módszere az idővédelem, amelyet már a kezdeti szakaszban biztosítani kell beavatkozásokhoz.[55][56][57]

3.2.7. A mérés indokoltsága egy példán keresztül

A feltételezésünk alapján nézzünk meg egy ADR szerinti 7. osztályú szállítmányt, mely $^{137}$Cs zárt sugárforrást tartalmaz. A szállítójármű közúti balesetet szenved, melyben a jármű, a vezetője és az áru is sérül. A gépkocsi kigyullad, a sofőr eszméletlen, a sugárforrás csomagolása olyan mértékben sérült, hogy feltehetőleg nyílttá vált, esetleg szétszóródott. Egy járókelő értesíti a segélyhívót, azonban a bejelentésből nem derül ki, hogy az autón radioaktív anyagot jelző bárca lenne. Az elsődleges beavatkozó egységei információi szerint tehergépjármű lánggal ég és egy fő beszorult sérült van. Ebben az esetben a tűzoltásvezető, illetve kárhelyparancsnok felkészülésének, alaposságán, körültkéntésén múlik, hogy a helyszíni felderítés kiterjedjen arra, van-e valamilyen veszélyes anyagot jelző bárca a járművön. Amennyiben ez elmarad, megkérhetik, hogy csak utólag, akár a tűzvizsgálat során derül fény arra, hogy a beavatkozó állomány ionizáló sugárzásnak volt kitéve. [58]

Következő kérdés, hogy mit tesz a tűzoltásvezető, ha tudomása van arról, hogy radioaktív anyag van jelen, életmentésre van szükség, azonban a sugárzási szintekről nem állnak rendelkezésre konkrét mérési adatok.[59]

97 Veszélyes áruk jelölésére használt tábla nemzetközileg használt egyezményes jelölésekkel
A példánkban szereplő Yellow-III kategóriájú98 küldeménydarabot szállító jármű közúti balesetben megsérül. A csomag tartalma egy 175,4 GBq aktivitású 137Cs izotóp, 10 cm élhosszúságú kocka belséjében, körben 4 cm vastagságú ólommal, kívül polisztirol hab töltetű, 1 m élhosszúságú kocka alakú csomagban. Az ölományékoláson kívül 2,63 GBq aktivitás érvényesül, így a csomag felületén 1038 μGy/h (sarkainál 519 μGy/h) dőzisteljesítmény mérhető. A felülettől 1 méterre 100 μGy/h a dőzisteljesítmény, így a Ti99=10, a 20 μGy/h a felszintől 2,8 m-re mérhető. Amennyiben tehát a forrás zárt marad, a csomagtól 1 méterre a dőzisteljesítmény 100 μGy/h, a beavatkozók 500 órányi munkavégzéssel gyűjthetik össze az 50 mSv dózist. Amennyiben 1 méternél közelebb kell menniük hozzá, netán a közvetlen közelébe, akkor is minimálisan 48 órát tölthetnek ott a dóziskorlát eléréséig.[60]

Ha viszont megsérült a csomagolás, különösképpen az ölományékolás, akkor a forrástól 1 méterre 14 mGy/h lesz a dőzisteljesítmény, ami már csak 3,5 órányi beavatkozásra ad lehetőséget. Amennyiben valamilyen okból kifolyólag 10 cm-re meg kell közelíteni, az a négyzetes távolságfüggés miatt már 1,4 Gy/h-s sugárzási szintet jelent, amiben mindössze 2 percet töltethet a tűzoltó. Értelemszerűen életmentes esetén az ötszörös megengedett dózis miatt minden fent leírt esetben a benntartózkodási idő is ötszörös. [61]

Ha pedig az anyag kiszóródásával és a beavatkozók védőruházatának szennyezódésével is számolni kell, akkor a sugárzó anyag és a test távolságának drasztikus lecsökkenése miatt a tűzoltó rövid idő alatt akár halálos dózist is kaphat, attól függően, hogy az anyag mekkora része szóródott ki. Ha például az anyag 10 %-a került a tűzoltó ruházatára egyenletes eloszlásban, akkor a védőruha miatt 1 cm távolsággal számolva fél óra alatt 7 Sv effektív dózist kap. Látható, hogy a sugárfelderítésnek és a helyszín műszeres felmérésének kardinális szerepe van a beavatkozás megtervezésében és megvalósításában, és enélkül gyakorlatilag az életmentést sem ajánlott elkezdeni.[62]

3.2.8. A megbízás kérdésköre

A vezetői munkánál is fontos, hogy kisebb-nagyobb mozgásteret adjunk a különböző képességű és felkészültségű beosztott vezetőknek. A dolgozat témájaival kapcsolatban elmondható, hogy egy ilyen típusú káreset kezelésénél a tűzoltás egyszemélyi felelős vezetőjét lehetőleg nem szabad az eseménynél problémát jelentő izotópok károsító

98 ADR bárca a 7. osztály jelölései utalnak a sértetlen csomagolás felületén mért legnagyobb sugárzási szintre: I. csoport - fehér: 0,005 mSv/h; II. csoport - sárga: 0,5 mSv/h; III. csoport - sárga: 2 mSv/h
99 TI: transzport index, szállítási mutatószám
hatásának kiteni. Sugárveszélyes területen, is szükséges már a követett irányítás, annak érdekében a hogy a beavatkozást vezető végig tudja irányítania a kárfelszámolást (15. ábra). Felderítés után, amennyiben megbízonyosodunk arról, hogy sugárzó anyag környezetében kell beavatkoznunk, feltétlenül ki kell szerveznünk a közvetlen irányítási feladatokat, még ha „egysúlypontosnak tűnő” káresetnél, mint például közlekedési baleset, avatkozunk is be. Feltételezésem alapján ezek az események mindig több aktív folyamattal rendelkeznek.

Felderítés után, amennyiben megbizonyosodunk arról, hogy sugárzó anyag környezetében kell beavatkoznunk, feltétlenül ki kell szerveznünk a közvetlen irányítási feladatokat, még ha „egysúlypontosnak tűnő” káresetnél, mint például közlekedési baleset, avatkozunk is be. Feltételezésem alapján ezek az események mindig több aktív folyamattal rendelkeznek.

15. ábra Műveleti terület sugárveszélyes káresetnél (4/2017 BM OKF Intézkedés 4. sz. melléklet)

Az ötödik fejezetben bemutatott radiológiai gyakorlaton, a jelentkező feladatok szervezését kellett hatékonyan, és biztonságosan végrehajtani a tűzoltásvezetőnek, a KML segítségével. Az idővédelmet alkalmazva kellett gondoskodnia a létszám cseréjéről egy közlekedési baleset folyamán, ahol radioaktív izotóp is jelen volt. A beosztott tűzoltók nem érzékelhették a veszélyt, mert arról csak a KML „mérése” által szereztek tudomást, ezért a tűzoltásvezetőnek kellett a dóziskorlát elérésekor rendelkezni a cseréről. Nehéz megmondani, hogy valós eseménynél az életveszélyben lévő sérültet otthagynak-e a pillanatnyi helyzetében, ha már elérték a dóziskorlátjukat, de már csak egy-két perc hiányzik az életmentés befejezéséhez. A veszélyvállalás témaköre mindenesetre jelen van a beavatkozásnál, és további kutatást igényel, ezért csak abból a szempontból vizsgálja a dolgozat, hogy milyen ésszerű (indokolt) keretek közát választ a parancsnok módszereket. Egy utasításban nagyobb a mozgásszabadság, ezért előfordulhat, hogy egy beosztott, egy általános utasítás esetén egy nagyobb sikert igérő módszert fog előnyben részesíteni, ha az gyorsabbnak, és hatékonyabbnak tűnik, még ha ez veszélyesebb is. Ezért lényeges egy vezetőnek vagy személyes vezetőnek elődöntenie, hogy parancs vagy utasítás formájában fogja a feladatokat meghatározní. Amennyiben a parancs mellett dönt, akkor közvetlenül
irányít és konkrét cselekvési formát határoz meg, amely inkább a személyes vezetési stílusnak, illetve elveknek felel meg.

Ez a kérdéskör azért fontos, mert a beavatkozást vezetőnek — különböző irányítási struktúrákon keresztül — végig kézben kell tartania az eseményeket. A sugárforrás jelenlétében viszont nem maradhat, csak ameddig a személyes dóziskorlátja megengedi, tehát mindenképpen meg kell bíznia olyan személyekben, aki képes a személyes vezetésre, és kiképzett a sugárforrások jelenlétében végrehajtott kárfelszámolásra.

3.3. Nagy alapterületű, komplex feladatkört jelentő tűzesetek felszámolása

3.3.1. Bevezetés

A csarnok jellegű építmenyek tüzei mindig „nagy tűzeset” jelzést kapnak a beavatkozó állomány szempontjából, hiszen az égésük során nagyon intenzív gázcsere folyamatok zajlanak le és olykor kiszámíthatatlan égési jelenségeket is produkálhatnak [27]. A felszámoláshoz a helyszínre rendelt nagy létszámú tűzoltó erők, -eszközök összehangolt, sokszor emberfeletti odaadással járó munkája szükséges. A tűzoltás bonyolultsága nyilvánvaló, ennek ellenére a tűzoltás taktikája az erő-, eszköz számításával együtt kezelve még a komplexnek ítélt szakirodalmakból is hiányzik. [21] Mivel ezeknek a csarnok típusú építmenyek tűzoltásának az előfordulási aránya ritka, a jelentkező feladatokkal kapcsolatos döntéshozatali mechanizmusok sem mindennap jelentkeznek a tűzoltásvezetők előtt, akár elsőként a helyszínre érkező raj-, szolgálatparancsnok, akár KMSZ parancsnok tevékenységét nézzük. [29] A feladatok megosztása, kiszervezése, különösen az olyan nagy volumenű káresetek tekintetében, mint a csarnok jellegű épületek tűzoltása kézenfekvő, egy tevékenység nem szervezhető ki, ez pedig nem más, mint a tűzeset minősítése101. [63]

100 A tűzoltás, műszaki mentés irányítására jogosult személy
101 39/2011 BM Rendelet 18§ (4) bd „a tűzoltásvezető a megfelelő tájékoztatás érdekében jelenti-az esemény riasztási fokozatának minősítését”
Az eredményes tűzoltás, kárfelszámolás végrehajtáshoz szükséges erők, eszközök bevetésénél jelentkező kritérium szempontok szerint optimális mennyiségű, optimális oltótulajdonságú, optimális intenzitású, optimális taktika szerint szeretnénk oltani, a lehető legkisebb veszélyeztető tényező (civil személyek, beavatkozó állomány, környezet, további menthető érték, stb.) mellett. [31] Ez azért is lényeges, mert a rendelkezésre álló erőforrásaink rendszerint korlátozottak, ugyanakkor, a tüzeset során jelentkező egyéb tényezők (mentendő személyek, időjárási viszonyok, a helyszín megközelítése, anyagtulajdonságok, épületszerkezeti, tárolási jellemzők, a helyszínre érkező további erők időbeni korlátja stb.) miatt ezen irányelvek egy része a tapasztalatok szerint nem valósulhat meg. Az elődleges feladatok közül is a legfontosabb az oltás leghatékonyabb elvégzéséhez szükséges személyi, technikai feltételek felmérése, majd a tüzeset minősítésével ezek helyszínre rendelése lehetőleg a legkorábbi időszakaszból.

A fenti feladatok láthatóan nagyon bonyolultak, a tűzoltásvezető számára csak nagyon kevés idő áll rendelkezésre döntésének meghozatalához, így a hagyományos elemző, értékelő munkára a helyszínen már nincs idő, gyors döntést kell hozni [19]. A kutatások azt mutatják, hogy a parancsnokok nem is törekszenek optimális döntésekre, sokszor megelégednek azzal, ha szakmailag elfogadható az eredményességük [24]. Azért, hogy az eredményesség a lehető legkiselebb kerüljön az optimálishez, olykor érdemes újra átgondolni az eddig alkalmazott oltási taktikát, az erő-, eszköz számítás alapjait és a felhalmozott tapasztalatok alapján értékelni azok eredményességét.

### 3.3.2. Taktikai jellemzők a csarnok jellegű építmények tüzeinek oltásánál

A Tűzoltás-taktikai Szabályzat V. fejezete a „Csarnok jellegű építmények tüzeinek oltása” címet viseli, amely konkrét tevékenységeket határoz meg a tűzoltás előkészítő-felderítő szakaszában. Ezek a tevékenységek a bevavatkozás elsődleges feladatai közé tartoznak. Néhány gondolatot kiemeltem a szabályzat előírásaiból, amely információk döntően befolyásolják a bevavatkozáshoz szükséges erő-eszköz mennyiségét. Ez természetesen nem azt jelenti, hogy más szempontok nem befolyásolhatják a tüzeset minősítését.

**Jelzés**:

„hány kijárattal rendelkezik az épület;”

„veszélyes anyag jelenléte, fajtája és becsült mennyisége;”

---

102/6/2016 BM OKF Utasítás a tűzoltás-taktikai Szabályzat kiadásáról
103/6/2016 BM OKF Utasítás a tűzoltás-taktikai Szabályzat kiadásáról V. fejezet Csarnok jellegű építmények tüzeinek oltása 1. Jelzés
„árukészlet jellegére, raktározás módjára;”

„A tűzjelzést értékelő a riasztási fokozat meghatározásakor, amennyiben készült a létesítményre TMMT\textsuperscript{104}, vegye figyelembe az abban foglaltakat, ennek hiányában a helyszín adottságaiból, a helyi sajátosságokból következő erő-és eszkökszükségetet is.”

Felderítés\textsuperscript{105}, fel kell deríteni a veszélyesanyagok jelenlétének lehetőségét.”

Beavatkozás\textsuperscript{106}, ha a hőhatás az épületszerkezeti elemeinek szilárdságát veszélyezteti, intézkedni kell azok hűtéséről, amennyiben az épület összeomlásának veszélye fennáll, a bent lévőket haladéktalanul ki kell vonni. Ebben az esetben tűzoltás csak kívülről, és biztonságos távolságból végezhető; “tűzoltás során elsősorban vízzel oltásra, illetve kombinált oltásra kell felkészülni;”

Az utasításból kiemelt részek, azért hangsúlyosabbak, mivel a kiterjedt tűzterülettel kapcsolatos feladatokat tekintjük át, az oltóanyagok választásánál, a támadás irányának meghatározásánál, illetve a bevetett sugarak számánál (tehát az időegységére vonatkoztatott oltóanyag mennyiségnél), így tulajdonképpen a tűzeset minősítésénél, a helyszínre rendelhető erő, eszköz mennyiségénél játszanak döntő szerepet.[64]

Véleményem szerint a riasztott erők-eszközök mennyiségének indokoltsága dilemmát okozhat egy tűzoltás-vezetőben akkor, amikor minősít egy-egy tűzesetet a helyszínen. Ez a folyamat stresszel jár, és korlátozhatja a döntéshozatal talán, de mivel jogszabály\textsuperscript{107} írja elő ezt a tűzoltás-vezetőnek, a tűzeset felszámolásához szükséges erőt-eszközt joga, és kötelessége kirendelni, amennyiben ehhez megfelelő információval rendelkezik.

Amikor a helyszínen tartózkodó tűzoltó gépjárművek mellé, viszonylag nagy vonulási idővel a helyszínre érkező távolabbi hivatásos tűzoltó-parancsnokságok, örsök, önkéntes egyesületek eszközeit kell leriasztani, akkor ennek a döntésnek a szakmai indokait felmérni, beazonosítani, a paraméterek alapján a szükséges eszköztípusokat (oltóanyagtípus, teljesítmény), azok mennyiségére, illetve bevetési-elhelyezési (taktikai) alkalmazására döntéseket hozni nem mindennapi feladat.

Leginkább oltóanyag tekintetében kell átgondolnunk, hogy milyen oltóanyaggal kellene rendelkeznünk az eredményes tűzoltáshoz. Fontos, hogy az oltóanyagoknak az oltóhatása jól érvényesüljön, és megfelelő intenzitással, megfelelő formában tudjuk kijuttatni a

\textsuperscript{104} Tűzoltási és Műszaki Mentési Terv
\textsuperscript{105} 6/2016 BM OKF Utasítás a tűzoltás-taktikai Szabályzat kiadásáról V. fejezet Csarnok jellegű építmények tűzeinek oltása 2. Felderítés
\textsuperscript{106} 6/2016 BM OKF Utasítás a tűzoltás-taktikai Szabályzat kiadásáról V. fejezet Csarnok jellegű építmények tűzeinek oltása 5. Beavatkozás
\textsuperscript{107} 39/2011 BM Rendelet A tűzoltóság tűzoltási, és műszaki mentési tevékenységének általános szabályairól
tűzoltási területre. A tűzterjedéssel kapcsolatos számítások kevésbé jelennek meg, hiszen egy már kialakult tűzterülethez köthető szervező tevékenység áttekintése volt a fő cél, amikor a célunk az esemény felszámolása a legrövidebb idő alatt, a legkisebb károkozással, a legnagyobb biztonság mellett, környezetvédelmi szempontok figyelembe vételével. [65] [66]

3.3.3. Az erő eszköz számítás alapjai

Ahhoz, hogy megértsük a tűzoltáshoz alkalmazott oltóanyagok mennyiségi összefüggéseit az eseményvoluménehez az alapfogalmak tisztázása elkerülhetetlen.

Alapfogalmak

Az oltóanyag fajlagos adagolási intenzitása – I: Az oltóanyag azon mennyisége, amelyet egységnyi idő alatt a tűz számítási paraméterének egységére juttatnak ki. A számítási paraméter függvényében vízzel oltásnál értelmezünk:

a) lineáris adagolási intenzitás: - I₁ (l/m/min)

b) felületi adagolási intenzitás: - I₂ (l/m²/min); meghatározása táblázatból: I₂= h₀ Iₐ


A tűz területe – At (m²): A feltételezett tüzesetnek a vizsgált időpontig valószínűsített és számítással meghatározott alapterülete.

Az oltási mélység – h₀ (m): Az a távolság, melynek mértékében a sugárcsőből kijuttatott oltóanyag a tűzterületek mélységében – a tűz szélétől befelé – érinti, és ott hatásos oltást fejt ki. Kézi működtetésű sugárcsövek esetében az oltási mélység 5 m, vízágyú alkalmazása esetén 10 m.

Tűzoltási terület – Ao (m²): A tűzterület azon része, ahol megvalósítható vagy célszerű megvalósítani a vizsgált időszakban a feltételezett tűz oltását.

Az egy raj által szerelhető sugarak száma – nₑ: Egy teljes raj 2 sugarat képes megszerelni és működtetni, egy félraj pedig 1 sugarat.

A sugárcső teljesítménye – qs (l/min): A sugárcsővön időegység alatt átáramló vízmennyiség.

108109/2000 BM OKF Főigazgatói Intézkedés a beavatkozáshoz szükséges erő-eszköz és oltóanyag számítás módjáról
A tűz oltásának időtartama – \( t_0 \) (min): Az az időtartam, mely alatt a keletkezett tűz eloltható. Az eredményes oltás feltétele, hogy a tűzterület egészén vagy csak azon részén, ahol a taktikai célszerű vagy szükségszerű a meghatározott\(^{109}\) adagolási intenzitás mértékét maradéktalanul biztosítsuk. Vízzel oltás esetén ez az időtartam 10 perc.

\[
\begin{align*}
Q_{\text{SZ}}^\text{olt} & \quad \text{az égés megszüntetéséhez szükséges, időegységre vonatkoztatott vízmennyiség (l/min);} \\
Q_{\text{SZ}}^\text{véd} & \quad \text{a védelemhez szükséges, időegységre vonatkoztatott vízmennyiség (l/min);} \\
Q_{\text{SZ}}^\text{össz} & \quad \text{a tűz oltásához szükséges, időegységre vonatkoztatott vízmennyiség (l/min).}
\end{align*}
\]

\[
\begin{align*}
W_{\text{össz}} & \quad \text{összes vízszükséglet (l);} \\
W_{\text{olt}} & \quad \text{a támadó sugarak működéséhez szükséges vízmennyiség (l);} \\
W_{\text{véd}} & \quad \text{a védősugarak működéséhez szükséges vízmennyiség (l);} \\
T_{\text{véd}} & \quad \text{a védősugarak feltételezett működési időtartama (min);} \\
n & \quad \text{oltási területhez tartozó lépcsők száma (hány lépcsőben kell az oltáshoz szükséges vízmennyiséget kivenni).}
\end{align*}
\]

A beavatkozás időtartamát tekintve, azt nagyban befolyásolja a tűzoltás kezdeti szakaszában rendelkezésre álló oltóképesség, amely többféleképpen használható fel. A Tűzoltás-taktika egyik legfontosabb szabálya, hogy a tüzet minden irányból támadni kell. Egy tűzet – különösképpen, ha nagy kiterjedésű és nagy intenzitású– csak nagy mennyiségű oltóanyag felhasználásával lehet véglegesen eloltani, de a védelemhez szükséges kapacitásnak is kiemelkedőnek kell lenni. [65] [66]

3.3.4. Az erő eszköz igény modellezése

A szemléltetéshez egy modellt alkottottam (16. sz ábra), amelyen keresztül elvégzett néhány egyszerűsített számitást, és meghatározta a beavatkozáshoz szükséges időegységre vonatkoztatott, valamint a teljes oltóanyag mennyiséget. A modellezéshez felhasznált paramétereket hasonló méretű tárolási létesítményekből képeztük le. A modell, jellemző geometriai paraméterei a befoglaló élek méretei, amelyekkel a területét, felületeit, és a térfiguratát tudjuk kiszámolni. A könnyebb számíthatóság érdekében téglatest formán keresztül modelleztük a folyamatokat. [65] [66]

\(^{109}\) BM OKF 109/2000. számú Intézkedése a beavatkozáshoz szükséges erő-eszköz és oltóanyag számítás módjáról 1. sz. táblázat
Méretek: a=20 m  b= 50 méter  c=10 méter

16. ábra Csarnok jellegű épület modellezése. (Készítette: Rácz Sándor)

3.3.5. Vízzel oltás

A szükséges oltóanyag mennyiségét a továbbiakban kizárólag vízzel oltáshoz számoljuk ki, aminek az az oka, hogy a vízsugarak, habosított vízsugarak szerelése és alkalmazása a beavatkozás során egy jól működő taktika, amely kiterjedt tűzterület alkalmával több esetben volt célravezető eljárás. A habbal oltás feltételeinek a biztosítása, az oltóanyag bejuttatása a területre aránytalanul nagy azonnali élő bevonását jelenti, amit a tüzoltásvezető nem fog tudni megtenni. Bizonyos esetekben természetesen a tüzoltás taktikát mégis hozzá kell igazítani az oltáshoz szükséges oltóanyagtípushoz, mint pl.: tűzveszélyes, veszélyes anyagok, folyadékok égése, vagy veszélyeztetettsége.

Az első esetben (17. ábra „1.”) a rövidebb oldal irányából támadjuk a tüzet.

\[ h_0 = 5 \text{ m} \quad A_t = 100 \text{ m}^2 \quad I_A = 5 \text{ l/perc/m}^2 \quad Q_s = 300 \text{ l/perc („C” sugár)} \]

\[ Q_{sz,olt} = 500 \text{ liter/perc/m}^2 \] (17. ábra „1.”)

Ebben az esetben 2 db „C” sugár közel teljes kapacitással történő működtetése szükséges, 10 perces oltási lépcsővel számítva az oltás 10 lépcsőben valósul meg (100 perc) és a \[ W_{olt} = 50000 \text{ liter.} \]

A támadás irányát az épület hosszabb oldalához igazítva (17. ábra „2.”) nyilvánvalóan nagyobb tűzoltási területet kapunk (250m²), amely esetben a tűzoltási területre kijuttatott időegységre vonatkoztatott oltóanyag mennyiség is nagyobb lesz \[ Q_{sz,olt} = 1250 \text{ liter/perc/m}^2. \]

Ebben az esetben 5 db „C” sugár működtetése szükséges, Elméletben az oltási lépcsők száma 4 db lesz, tehát az oltás 40 perc időtartamig fog tartani.
Oltási kombinációk. (Készítette: Rácz Sándor)

Kedvező, amikor minden irányból megvalósulhat a tűz oltása (18. ábra), de az oltási mélység nem teszi lehetővé az egy lépcsőben történő tűzoltást. Ebben az esetben 600 m² tűzoltási területtel számolunk az első esetben – amely 3000 liter/perces időégységre vonatkoztatott oltóanyag mennyiséget igényel – elméletben 2 oltási lépcsővel eloltható a feltételezett tűzterület. Ehhez viszont már 10 db „C” sugár egyidejű működtetése szükséges, amihez 5 raj110 jelenléte kell, amihez szükségszerűen képeznünk kell tartalékot, valamint egyéb feladatok végrejátszására létszámot.

\[ A_{to} = 2 \cdot h_0 \cdot (a + b - 2 \cdot h_0) \]

18. ábra Tűzoltás 2 lépcsőben. Oltási kombinációk. (Készítette: Rácz Sándor)

Optimális a helyzet, amennyiben a tűzterület megegyezik a tűzoltási terüettel (19. ábra). Az oltás elméletben 1 lépcsőben eloltható, ebben az esetben a teljes 1000 m² tűzterület oltása történik, amely 5000 liter/perces időégységre vonatkoztatott oltóanyag mennyiséget igényel,

---

110 Tűzoltó gépjárműfecs kendő rendszeresített létszám (6 fő)
és elméletben 1 oltási lépcsővel 50 000 liter felhasználásával eloltható a feltételezett tűz, amelyhez már szükségesek a 10 méteres oltási mélységgel rendelkező „B” sugarak.

Egyéb tervezendő víz mennyiség mindegyik esetben az időegységre vonatkozott, védelemre szánt oltóvíz szükséglet (QSZvéd), illetve a mentéshez szükséges erő, valamint tartalékképzés.
Az előzőeken kívül természetesen a tűzoltási területek számításának más kombinációja létezik, amely alkalmazása szakirodalmakból elsajátítható.
Az erő eszköz számítás felületi oltásnál nem veszi figyelembe a tárolt anyagok térben elhelyezkedését, ezért nem is kaphatunk pontos értéket, hiszen az égő anyagok tulajdonságai, egymáshoz való viszonyuk, különböző tulajdonságú anyagok, elhelyezése, egymást takarása mind-mind befolyásolja az oltás elhúzódását, nem beszélve az egyik legnagyobb veszélyforrásról, a szerkezeti károsodásról (tárolási, épület), amely megnehezíti a teljes tűzterület oltását. [67]
Az oltáshoz,— amennyiben vízzel oltás esetén felületi oltást alkalmazunk— szükséges erőket a vázolt példákon keresztül már kiszámíthatjuk, amelyeket kiegészíthetünk a védelemhez szükséges lineáris adagolással, amely esetben az adagolási intenzitás liter/méter/percben kerül meghatározásra. [65] [66]

3.3.6. Az oltóvíz mennyiségének változása a térfogat függvényében

A gyakorlatok tervezésénél, amennyiben a tűz számítási paramétere felületi, nem vesszük figyelembe azokat a geometriai változókat, amelyek a tárolásból adódnak. A nagy mennyiségű tárolt anyag térbeli elhelyezkedése nemcsak taktikailag állítja nehéz helyzet elé a tűzoltásvezetőt, de jelentősen, akár 20-100%-al is megnövelheti az elméleti tűzoltási

---

111 Pl. BM Katasztrófavédelmi Oktatási Központ jegyzet A tűzoltáshoz szükséges erő eszköz számítása BM TOP Tűzvédelmi Kiképző Intézet
területet. Így az időegységre vonatkoztatott oltóvíz mennyiségét, tehát a beavatkozáshoz szükséges rajok számát is.

Modellünk esetén az 1000 m² alapterületű csarnok (amely a kisebbek közé tartozik, hiszen inkább jellemzőek a 2000 m² feletti raktárak) tűzoltási területe — tekintettel arra, hogy a tűz minden oldalról támadható — megnövekszik a tárolt anyagok égő felületével, amelyek elhelyezkedése nem olyan homogén, mint az az 20. számú ábrán látható, szemléltetésre használt téglalap alakzatoké.

A csarnok típusú épületek raktárként történő kialakításakor tűzvédelmi szempontból, az elhelyezett anyagok tűzveszélyességi osztályba sorolása, tűzterhelése volt figyelembe véve, míg az új OTSZ\(^{112}\) kockázati besorolást alkalmaz a veszély mértékének megállapítására. A szabályzatok a menyezethez való távolság, és közlekedési, útvonalak legkisebb méretével kapcsolatban is tartalmaztak előírásokat. A közlekedési útvonalak a tárolt anyagok tagolása miatt további felületővenő hatással is lehetnek.[68]

Óvatos becslés szerint mintegy 60%-os raktározás esetén egy 10.000m³-es csarnok esetében ez közel 1000 m² tűzterületet jelent, amely 1 közlekedési útvonallal számítva 20%-kal nőhet (5. ábra). A helyiséget optimálisan kihasználva, 3-4 közlekedési útvonallal számítva akár meg is duplázódhat (15. számú kép illusztráció) a várható tűzterület, amely az útvonalak miatt kivonható területtek sem csökken lényegesen, különösen az égő anyagok roskadását, terülését figyelembe véve. [65][66] [69]

\[68\]

20. ábra Térfogati modell a tárolt anyagokkal. (Készítette:Rácz Sándor)

\[112\] 54/2014 BM Rendelet (XII.5) az Országos Tűzvédelmi Szabályzatról
Színházakhoz kapcsolódó oltóanyag igény

Egy másik, szintén nagy alapterületű létesítmény tekintetében is összevetést végeztem a belső szabályzókban rögzített erők, és a feltételezésem szerint szükséges erő, valamint oltóanyag mennyiség között. A budapesti Nemzeti Színház főszínpadi részét vizsgáltam meg ebből a szempontból, amelyhez nem számoltam a nézőtéri szükséges oltóanyag mennyiséget! A 11. számú táblázat alapján megtalálhatjuk az épületrészhez szükséges közelítő oltóanyag szükségletet, amelyet belső szabályzó határoz meg.[22]

<table>
<thead>
<tr>
<th>Az égő épület, épülmény, anyag megnevezése</th>
<th>Adagolási intenzitás (Iₐ) [l/p/ m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iroda és lakóépület</td>
<td>4,8 – 6,0 liter/perc/m²</td>
</tr>
<tr>
<td>Színházak színpadi része</td>
<td>12,0 – 18,0 liter/perc/m²</td>
</tr>
<tr>
<td>Színházak nézőtéri része</td>
<td>6,0 – 9,0 liter/perc/m²</td>
</tr>
</tbody>
</table>

11. számú táblázat Oltóvíz adagolási intenzitásai (109/2000 BM OKF Főigazgatói Intézkedés 1. sz. melléklet részlet)

<table>
<thead>
<tr>
<th>Az épület rendeltetése</th>
<th>Normatív tűzterhelés, az épületszerkezetek éghető anyagai nélkül (P) MJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>nézőtér</td>
<td>500</td>
</tr>
<tr>
<td>ruhatár</td>
<td>800</td>
</tr>
<tr>
<td>színpad</td>
<td>500</td>
</tr>
<tr>
<td>diszlettároló</td>
<td>1000</td>
</tr>
</tbody>
</table>

12. számú táblázat Lakó- és közösségi épületek, épületrészek normatív tűzterhelése (készítette: Rácz Sándor a 239/2011 Korm.rendelet 6.sz. melléklete alapján)
A kormányrendelet\textsuperscript{113}, a normatív tűzterhelést a példában szereplő színházak színpadi részén 500 MJ/m\textsuperscript{2}-ben maximálta (12. számú táblázat), amelyhez a BM OKF Főigazgatói intézkedés 12,0 – 18,0 liter/perc/m\textsuperscript{2} oltóvíz adagolási intenzitást határoz meg (11. számú táblázat). A kormányrendelet értelmében 500-1000 közötti MJ/m\textsuperscript{2} normatív tűzterhelésű létesítmény akár 8000 m\textsuperscript{2} tűszakaszának létesítését, és üzemeltetését engedélyezi létesítményi tűzoltóság nélkül. A Nemzeti Színház főszínpadi része 430 m\textsuperscript{2} amelyhez, annak esetleges tűze esetén átlagosan 15 liter/perc/m\textsuperscript{2}-es adagolási intenzitással 6450 liter/perces időegységre vonatkoztatott oltóanyag mennyiségére lenne szükség. Ez a mennyiség több mint 20 darab „C” sugárcső (qs= kb. 300 l/perc) teljesítményével lenne elérhető, amely — feltételezve egyéb feladatokat is — több mint tíz raj munkáját igényelné. Ebben a számításban nincs benne a nézötér oltásához szükséges oltóanyag mennyiség. A bevethető „C” sugarak számát lehetne csökkenteni „B” sugarak alkalmazásával (600liter/perc), és mobil vizágyúkkal amelyek, akár 2000liter/perc teljesítményre képesek (16. számú kép).\cite{70} \cite{71} Ettől a számítól lényegesen kevesebb alkalmazható a taktikai, felállítási lehetőségek miatt, de látható hogy a szabályzó nem méretezi az elsőként riasztandó tűzoltó erőket a létesítmény méretéhez (13. számú táblázat).

16.számú kép Nagy teljesítményű mobil vizágyú, és „B” sugárcső
(Készítette: Rácz Sándor, Drezda Fachmesse 2017, Aschaffenburg Feuerwehr 2017)

\footnote{239/2011. (XI. 18.) Korm. rendelet az önkormányzati és létesítményi tűzoltóságokra, valamint a hivatásos tűzoltóság, önkormányzati tűzoltóság és önkéntes tűzoltó egyesület fenntartásához való hozzájárulásra vonatkozó szabályokról 6. számú melléklet}
Mindamellett megemlíthető, hogy a Nemzeti Színház is rendelkezik Tűzoltási és Műszaki Mentési Tervvel, amely már többet (4 raj) rendel kezdő erőként az eseményfelszámolásához, figyelembe véve a számított tűzterhelést.\[72\] A riasztás kiadásakor a terv szerinti érték fog elsőbbséget élvezni az általános faábra szerinti minősítéssel szemben. Megállapítható, hogy itt is eltérés tapasztalható a katasztrófavédelem riasztási rendszerében rögzített erők, és a számítással igazolt erők között, amelyek a véleményem szerint a leginkább befolyásolják a beavatkozás sikerességét.\[73\]

### 3.4. Részkövetkeztetések

A középmagas, és magas lakóépületek tűzeseteinél, sok esetben határozottan elkülönülnek a terület alapú, és a feladat alapú súlyponti helyzetek, mindamellett együtt is jelentkeznek azok. A tűzoltásvezetőnek nagy a letting-szempontból indokolt a súlypontok számát, ezáltal a szükséges erőket is.

<table>
<thead>
<tr>
<th>Típus</th>
<th>Kategória I.</th>
<th>Kategória II.</th>
<th>Kategória III.</th>
<th>Kategória IV.</th>
<th>Egész raj</th>
<th>Fél raj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tűzeset</td>
<td>Kultúra/</td>
<td>Szórakoztatás</td>
<td>Színház</td>
<td>Egyszintes</td>
<td>Ég</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>szórakoztatás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Kultúra/</td>
<td>Szórakoztatás</td>
<td>Színház</td>
<td>Egyszintes</td>
<td>Füstölés</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>szórakoztatás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Kultúra/</td>
<td>Szórakoztatás</td>
<td>Színház</td>
<td>Egyszintes</td>
<td>Robbanás</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>szórakoztatás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Kultúra/</td>
<td>Szórakoztatás</td>
<td>Színház</td>
<td>Többszintes</td>
<td>Ég</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>szórakoztatás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Kultúra/</td>
<td>Szórakoztatás</td>
<td>Színház</td>
<td>Többszintes</td>
<td>Füstölés</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>szórakoztatás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Kultúra/</td>
<td>Szórakoztatás</td>
<td>Színház</td>
<td>Többszintes</td>
<td>Robbanás</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>szórakoztatás</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.számú táblázat Faábra részlet (tűzeset) (16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke részlet)
fő súlypont irányába fognak eltolódni. Az alfejezetben említettek szerint más szervezést igényel a különböző szinteken történt tűz oltása, és a kapcsolódó életmentés megvalósítása. A valós helyzetek modellezése, és az életszerű szituációkhoz tervezett gyakorlatok végrehajtása, különösen a végrehajtásban részt vevők vezetőinél növelheti a beavatkozások hatékonyságát a feladatok begyakorlásával, illetve azok szervezésével kapcsolatban. A típusos beavatkozások kritikus elemeinél már beazonosított feladatok, valamint a hozzárendelt végrehajtó állomány célirányos alkalmazása, és oktatása, valamint a feladatok fontossági sorrendjének kialakítása kidolgozható, és fejleszthető. Az általános tűzoltói feladatok hatékonyságának, valamint azok szervezésének a vizsgálata, és fejleszthetősége szükséges a súlyponti erőmegosztás szerinti eseményfelszámolásnál. A dolgozatomban ötödik fejezetében a beavatkozás előkészítéséhez tartozó készségfejlesztő gyakorlatokat dolgoztam fel, amelyek a tűzoltásvezető döntési képességét javítják ezeknél a tűzeseteknél.

A radiológiai káresetek problematikájával foglalkozó része a fejezetnek alapvetően a munkavégzés biztonsági kérdéseire koncentrál. A problémát az izotópek alapvető tulajdonsága a radioaktivitás, annak egészségkárosító tulajdonságai és ezzel kapcsolatban a védekezés megvalósíthatósága jelenti. A radiológiai esemény olyan káresemény, amelynél radioaktív (azaz nem nukleáris, de ionizáló sugárzást kibocsátó) anyag, esetleg ionizáló sugárzást létrehozó berendezés jelenlétéhez köthető a kárhelyszín. Az ionizáló sugárzásoknak típustól és dózistól függően egészségkárosító hatásaik lehetnek, extrém esetben halált is okozhatnak, miközben érzékszerveinkkel nem, csak műszerekkel detektálhatók. Éppen ezért ilyen esetben az élet- és vagyonmentés során az elsőként beavatkozó tűzoltók sugárvédelme alapvetően fontos.

A téma feldolgozása során egyértelművé vált, hogy mért értékek hiányában a jogszabályokban foglaltak nem tudunk eleget tenni. Az ilyen típusú események felszámolása közben nem tudunk megfelelő döntéseket hozni, a sugárvédelmi alapelveknek nem tudunk megfelelni.

Az ionizáló sugárzás kibocsátására alkalmas sugárforrásokat számos helyen használjuk különböző célokra. Ezekkel az anyagokkal találkozhatunk atomerőművekben orvosdiagnosztikában, anyagvizsgálatoknál, kutatási, vagy oktatási helyszíneken éppen ezért előfordulásuk, az előbb felsorolt helyeken kívül a közúti közlekedésben is lehetséges. A szabályzók betartása ellenére is lehetséges olyan helyzet, amikor ilyen anyag szállítás, használat, feldolgozás, vagy gyártás közben nyílttá válik. A fejezetben arra a rövid időszakra fókuszáltam, amikor egy nyitottá vált sugárforrás jelenlétében a tűzoltói munkavégzés elkerülhetetlen. Az ionizáló sugárzások típusai, azok hatásai, és a védekezés
módozatai szükségesek voltak a téma feldolgozásához. A sugárveszélyes területen történő tűzoltói beavatkozás során is szükséges alkalmazni a sugárvédelem három legfrissebb alapelvét: **indokoltság, optimalis, dóziskorlátoszás.** Az indokoltság elve alapján a beavatkozás csak akkor végezhető el, ha az azzal járó haszon meghaladja a kockázatot, miközben az ALARA elvnek megfelelően optimálni kell a védelmet, azaz a beavatkozás során a beavatkozók sugárterhelését az ésszerűen elérhető legalacsonyabban kell tartani, és a rendeletben meghatározott dóziskorlátokat be kell tartani. A tűzoltásvezető feladatai közül a **determinisztikus** (küszöbdózishoz köthető) hatások elkerülése, valamint a **sztochasztikus** (küszöbdózishoz nem köthető) hatások csökkentése mind a beavatkozó állomány, mind pedig a lakosság tekintetében elsődleges feladat. A sugárforrások méréséhez elméleti sugár fizikai alapismereteik szükségesek, továbbá elkerülhetetlennek gondolom a laborméréseket ellenőriző körülmények között. A mért adatokkal már tudunk természetes védekezést idővételelem, távolságvédelem, vagy árnyékolás alkalmazásával. Tehát a jogszabály által előírt felderítésünket mért értékek nélkül nem tudjuk megvalósítani. A KML-re KSE-re felmályított és rendszerezett műszerek segítségével mérhetővé válnak azok a mennyiségek, amely adatok nélkül, lényegében nem tudjuk a beavatkozásunkat elkezdeni.

A főváros kivételével, a területi szervek állományába tartozó, műszeres támogatással rendelkező KML hatályos belső szabályzó által előírt, hivatali munkaidőn kívüli (16:00-7:30) 1 órás riasztási normaideje miatt jelen állapotában nem tud megfelelő felderítéssel szolgálni a kárhelyszín parancsnokának, a tűzoltásvezetőnek. Az az időszak amíg a speciális műszerekkel rendelkező egységeink még nem érkeznek meg a helyszínre elegendő lehet súlyos egészségkárosodás elszenvedésére. A nemzetközi példákon keresztül láthatjuk, hogy a tűzoltóságok Európában több helyen is rendelkeznek egyéni doziméterekkel, amely segítségével elkerülhetjük a dóziskorlátunk átlépését. Ennek az időkülönbségnek a felszámolására a KML készenléti jellegű szolgálati munkarendbe történő átállítása lenne a megoldás, illetve a másik lehetőség a Hivatalos Tűzoltó-parancsnokságok, és Katastrófavédelmi Őrsök tűzoltó gépjárműveinek radiológiai mérőeszközökkel történő ellátása. Ez azonban azzal járja, hogy az állományt radiológiai továbbképzésben kellene részesíteni, lehetőség szerint több szinten (beavatkozói, vezetői, döntéshozói), több formában (elméleti, laboratóriumi, és terepgyakorlat).

Mind ezek mellett a sugárveszélyes területeket „többsúlypontos” káreseteknek kell tekintenünk, ugyanis feladataink keletkeznek az élet- vagy tárgymintéssel kapcsolatban, a
műszaki mentéssel vagy a tűzoltással kapcsolatban, létszámcserével, és mentesítéssel
kapcsolatban.

A szervezés tekintetében a korábban megállapított **terület**, és **feladat** alapú súlyponti
erőmegosztást kiegészítettem **idő alapú** súlyponti erőmegosztással, mivel a sugárveszélyes
területen végrehajtott tűzoltói beavatkozások alkalmával okszerűen számíthatunk
sugárterhelésre, amely elleni védekezés egyik módszere az idővédelem, amelyet már a
kezdeti szakaszban biztosítani kell beavatkozásokhoz. A dóziskorlátok betartása miatt
lehetséges, hogy valaki már elért a saját dóziskorlátját, ezért nem vehet részt a további
munkálataikban. Egy példán keresztül láthatjuk a mérés indokoltságát a dolgozat ezen
részében, amelyhez hasonló feltételezéssel az ötödik fejezetben feldolgozott gyakorlaton is
találkozhatunk.

A nagy alapterületű létesítmények tüzeinél alapvetően a **terület alapú** erőmegosztásra kell
felkészülnünk, amelyet azonban több változó pl.: raktározási technikák, technológiák, tárolt,
és veszélyes anyag jelenléte befolyásol. A raktározási technikák igen különbözőek,
amelyeket érdemes megismernie a készenléti szolgálatot adó állománynak, valamint vezetői
állománynak is. A beavatkozások alatt a nagy tűzoltási területek oltóanyag mennyisége
azonnali meghatározása is reális lehet, amennyiben a működési területükön található ilyen
típusú létesítményekre előzetes számításokat végeztek a tűzoltás vezetésére jogosultak.

A helyismereti foglalkozások, begyakorló gyakorlatok, gyakorlattervek, TMMT készítés jó
alkalma ad arra, hogy számítással meghatározzuk az esetleges kialakuló legnagyobb
éghető felületet, és a hozzá kapcsolódó erő, eszköz igényt is, hiszen láthatjuk, hogy
szabályos tárolás esetén is milyen mértékben növelheti meg a tűzoltási terület nagyságát a
létesítmények tagoltsága.

Mivel minden helyszín más, ezért érdemes helyismereti foglalkozások alkalmával nagyobb
hangsúlyt fektetni a tárolt anyagok mennyisége, illetve a raktározási típusok megismerésére,
különös tekintettel az alkalmazható tűzoltási taktikára, és rendelkezésünkre álló oltóanyag
mennyiségére. Nem lehet kijelenteni általánosan, hogy egy raktár alapterületénak, annak
teljes terjedelmű égésénél, akár a többszöröse lehet a tűzterület, de valószínűsíteni kell a
nagyobb tűzterületet. Mindebből következően a csarnok típusú, raktározási, vagy termelői
funckciókkal rendelkező létesítmények esetén, különösen amennyiben nem rendelkezik
beépített tűzoltó berendezéssel, és nagy — akár több ezer négyzetméteres — egybefüggő
tűszakaszokat tartalmaz, már okszerűen feltételeznünk kell a nagy kialakult tűzterületet a
tűzoltó egységek kiérkezésének időpontjában. [52] A nagy tűzterületek esetén, még
szerencsés esetben sem tudjuk a teljes tűzfelületet oltani, csak annak egy részét. Stratégiailag
ezért feltétlenül szükséges a korai szakaszban lokalizálni a tűzet. A teherhordó tetőzereknek szerkezeti acél elemeinek 500 C fok felett olyan mértékben csökken a szilárdsága, hogy elveszíti állékonyságát, tehát az oltási problémán kívül komoly biztonsági kérdés is a bent tartózkodók számára ez a helyzet. A flashower\(^{114}\) kialakulása előtt kell a megfelelő adagolási intenzitással támadnunk a tűzet, hogy a lehetőség megmaradjon a tűz teljes kifejlődésének a megakadályozására. Ehhez fontos ismerni a létesítményben tárolt anyagokhoz kapcsolódó időegységre vonatkoztatott oltóanyag adagolási intenzitást, valamint a lehetséges támadási írányokat is. A riasztás minősítését meghatározó módon befolyásolja az alapterület (az egy tűzsakaszban található veszélyeztetett terület is), valamint az ehhez alkalmazható technikai eszközeink kapacitása (pl. sugárcső teljesítmény, szivattyú teljesítmény, rendelkezésre álló oltóanyag mennyiség). \([65][66]\)

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Kategória I.</th>
<th>Kategória II.</th>
<th>Kategória III.</th>
<th>Kategória IV.</th>
<th>Egész raj</th>
<th>Fél raj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Éghető folyadék</td>
<td>Ég</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Éghető folyadék</td>
<td>Füstölés</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Éghető folyadék</td>
<td>Robbanás</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>Ég</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>Füstölés</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>Robbanás</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Építőanyag</td>
<td>Ég</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Építőanyag</td>
<td>Füstölés</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tűzettes</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Építőanyag</td>
<td>Robbanás</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

14.számú táblázat Faábra részlet (kategóriák ipari létesítményekhez) (16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke)

A műveletirányító jogosult emelni a faábra által felajánlott erők számát (14.számú táblázat), azonban ez ritkán következik be, és szubjektív megítélésen alapszik. A bevett szokás, hogy a további erők indítása a helyszínre érkező tűzoltásvezető visszajelzése, valamint konkrét igénye alapján történik. Javaslatom alapján, pontosabb erőszakdálkodást tenne lehetővé a terület méretéhez, és a tárolt anyaghoz kalkulált tűzoltói élő erő, és technikai kapacitás (15.számú táblázat).

\(^{114}\)flashower: teljes lángbaborulás, amely egy különleges tűzterjedési forma zárt térben. A forró, éghető gázokban gazdag mennyezeti füstrom mintegy egyszerre belobban, és a térben elhelyezkedő még éghető anyagokat meggyújthat
15. számú táblázat Módosított faábra (készítette Rácz Sándor a 16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke alapján)

<table>
<thead>
<tr>
<th>Típus</th>
<th>Kategória I.</th>
<th>Kategória II.</th>
<th>Kategória III.</th>
<th>Kategória IV.</th>
<th>Egész raj</th>
<th>Fél raj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>égő, vagy veszélyeztetett terület 100 m² alatt</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>égő, vagy veszélyeztetett terület 1000 m² alatt</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>égő, vagy veszélyeztetett terület 1000-2000 m² között</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Tűzeset</td>
<td>Ipari</td>
<td>Raktár</td>
<td>Egyéb</td>
<td>égő, vagy veszélyeztetett terület 2000 m² felett</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Azonban ez a megközelítés sem ad pontos értéket, mert nem tartalmazza az egyéb felismert súlypontok erő-, eszköz igényét. A faábrában található 373 db különböző tűzeseti minősítés, bár leszűkíti az eseményazonosítást, de nem feltétlenül a valós igényt fogalmazza meg minden esetben, azaz nem a hozzávetőleg szükséges értéket rendeli hozzá az eseményhez, hanem egy vélelmezett alaperőt, amellyel a beavatkozás elkezdhető. A korábbiakban bizonyítottak szerint, ezeknél a típusú káreseteknél éppen a kezdeti szakaszban van szükség nagy erőre.

A katasztrófavédelem tüzoltó egységei káreseti felszámolási tevékenységei több mint 99%-ban I.es fokozatú erővel elvégezhetők, azonban az a viszonylag kisszámú, mégis nagy erőket mozgósító káresettípus rendszerint nagy kárértékben jelentkezik, amennyiben az eseményt nem a korai szakaszában felderítik meg. Ebből a szempontból megközelíthető az erőgazdálkodási lehetőségeinket láthatjuk, — bár a katasztrófavédelem racionális keretek között tartja a riasztandó erőket, a túlriasztások elkerülése érdekében —hogy a riasztási erők eltérése a szükséges erők létszámához képest túl nagy ahhoz, hogy ne hozzunk elvi változtatást ezekben az esetekben.
4. A TŰZOLTÁSVEZETŐK ATTITŰD-VIZSGÁLATA

A dolgozatomhoz kapcsolódóan szükségem volt olyan kutatás elvégzésére, amellyel a tűzoltói beavatkozásokat végzők, azon belül a tűzoltásvezetők szempontjából kapjak képet arról, hogy milyen a látens veszélyeket, és a fizikai valóságokban érzékelhető veszélyforrásokat tartalmazó vízsgált alkalmazzott tűzoltási módozatokhoz való attitűdük. A kutatáshoz kérdőíves vízsgálatotokat végeztem, amelyeket két különböző időpontban, különböző elvek alapján szerkeszthetett kérdőívekkel végeztem el. A kérdőíves vízsgálataim során a Fővárosi Katasztrofavédelmi Igazgatóságon tűzoltás vezetésére jogosultak, és a Nemzeti Közszolgálati Egyetemen tanuló hivatásos tűzoltók részvételével elsőként „vegyes kérdőíves” vizsgálatot végeztem, amely arra irányult, hogy a válaszadók milyen általános vélekedéssel, és ismerettel rendelkeznek egyes általános, és speciális tűzoltási szakterületen végrehajtott beavatkozásról. A második vízsgálatommal (csak a Fővárosi Katasztrofavédelmi Igazgatóságon) olyan eredményekre szerettem volna jutni, amelyek alapján megállapíthatóvá válik egyes vizsgált elemek közötti eltérés, a kiválasztott tűzoltási területek összefüggésében. A kérdőívek szövege megtalálható a mellékletben, a kitöltött íveket saját archívumomban tárolom.

4.1. Az I. számú kérdőíves vizsgálat ismertetése

Az általam lefolytatott első kérdőíves kutatás (2018. május 133 fő) alternatív, és önálló vélemény kifejtését is biztosító kérdéseken keresztül, a kutatott területek egymáshoz való viszonyát, valamint a tűzoltásvezetők veszélyvállalási attitűdjét is vizsgálta. Ennek a kérdőívnek a kiértékelése kvalitatív eredményeket hozott, és meghatározta a későbbi kvantitatív vizsgálatom irányát.

A kérdőív tartalmazta a kérdések két alaptípusát a nyílt kérdést és az alternatív kérdést. A kérdések felépítése során az alternatív kérdések után nyílt kérdést is alkalmaztak. A nyílt kérdések elemzése során a válaszokat megvizsgáltam és csoportosítottam azokat, amelyek a különböző megfogalmazás ellenére ugyanazokat a véleményeket tartalmazták.

A kérdőív célja nem a tudásszint felmérése volt, hanem egy általános vizsgálat a veszélyes anyag jelenlétében végrehajtott beavatkozások, és sugárveszélyes környezetben végrehajtott beavatkozásokhoz társuló megoldási reflexeket, bizonytalanságot vizsgálta. Mivel a dolgozat írásának időpontjában nincs rendszeresítve a tűzoltó gépjárműveken sugárzó

115 önálló vélemény kifejtését lehetővé tevő válaszadási lehetőség
116 egy kérdéshez tartozó választható válaszok a kérdőíven
izotópok mérésére alkalmas műszer (csak a KML, KSE gépjárműveken), továbbá a képzési rendszerben sem jelenik meg hangsúlyosan a téma, számítani lehetett a témával kapcsolatos bizonytalanságra.

A kiértékelés alapján elmondható volt, hogy nem rendelkeztek gyakorlati tapasztalattal a radiológiai témában viszont az általános szakmai gyakorlatuk több mint 10 év volt. Veszélyes anyaggal kapcsolatos káresemény sem nagyszámú, azonban minden kérdőívet kitöltő vett már részt ilyen esemény felszámolásában. A kérdésekre adott válaszok kiértékelése csak kvalitatív módon került összefoglalásra, és iránymutatást adott a további vizsgálatokhoz. A feltett kérdésekre előforduló válaszok változatossága mindenesetre arra enged következtetni, hogy általános ismeretekkel rendelkeznek a válaszadók, viszont témaspecifikusan — vélhetően (és szerencsére) a tapasztalat hiánya miatt — valóban vannak bizonytalanságok.

A kérdésekre összességében a várakozásoknak megfelelő válaszokat kaptam, amelyeket összesítve megállapítható volt, hogy:

1. a tűzoltásvezetők alapvetően tisztában vannak a radiológiai veszély egészségre gyakorolt negatív hatásával;
2. radiológiai veszély esetén megfelelő információ nélkül nincsenek tisztában a veszélyes környezetben eltölthető idővel;
3. ha nem életmentésről van szó, nem kockáztatják feleslegesen az általuk vezetett állomány egészségét.

4.2. A kérdőíves prominencia kutatás céljának, módszereinek ismertetése

4.2.1. A kutatás célja

Az általam elvégzett prominencia kérdőíves kutatás célja, hogy reprezentatív mintán vizsgálva, a tűzoltásvezetésben jártas nagy tapasztalattal rendelkező szakemberektől szekunder információk segítségével, a vizsgált területekről információkat szereztek. A témához köthető szempontokon keresztül kifejtett vélemények alapján meghatározható a szervezet képessége a tűzoltás, és műszaki mentés tekintetében. A válaszadók, a kérdőívet anonim módon töltöttek, csupán néhány rétegező kérdés volt a kérdőívek bevezető szakaszában, amellyel a kutatási minta reprezentatív jellegét lehetett demonstrálni.
4.2.2. Az alkalmazott kutatási módszer a kérdőívhez

Hét fokozatú szemantikus Osgood féle differenciálskálán kérdeztem a tűzoltás vezetésére jogosultakat, hogy milyenek látták a tűzoltói felkészültséget. A kérdőív 1-es, és 7-es értékei az „egyáltalán nem megfelelő a feladat ellátásához”, és „teljesen megfelelő a feladat ellátásához” voltak. A kettő közötti értékeket kifejezni a véleményüket, attól függően, hogy az melyikhez áll közelebb. A differenciálskála kialakításához elegendőnek találtam a 7 fokozatot, amely egyrészt rendelkezett semleges, középső értékkal, másrészt gyorsabb döntést tett lehetővé a válaszadók részéről. A középső értékehez (4) képest magasabb értékeket pozitív, míg az alacsonyabb értékeket negatív attitűdnek értékeltem.

Az első kérdőíves vizsgálatomnál tapasztaltam, hogy az önálló vélemény kifejezésének a lehetőségét nem szívesen választották a válaszadók. Amennyiben a kérdésemre nem volt a feleletválasztási opciók között megfelelő válasz, de lehetőségük lett volna szövegesen kifejteni a véleményüket, sok esetben kihagyták a kérdés megválaszolását.

A felmérés a következő speciális tűzoltói feladatokról gyűjtött információkat:

1. általános tűzoltói beavatkozások (tűzoltás, műszaki mentés)
2. nagy alapterületű létesítmények tüzeinél végrehajtott tűzoltói beavatkozások
3. veszélyes anyag jelenlétében végrehajtott beavatkozások
4. villamos hálózatok, és berendezések környezetében végrehajtott beavatkozások
5. sugárveszélyes környezetben végrehajtott beavatkozások

A kutatásom lefolytatásánál felhasználtam a tűzoltás során megszerzett gyakorlati, és vezetői tapasztalataimat, valamint hipotéziseim kialakításakor, és igazolásakor logikai módszereket is alkalmaztam. A kapott eredményekkel feltételezéseimet kívántam megerősíteni, valamint a származtatott eredmények tekintetében a fejleszthetőségre vonatkozó - részletekbe nem bocsátkozó - iránymutatást is várhattam. Az általánosságban elfogadott kvantitativ-kvalitatív vizsgálati sorrendet felcseréltem, mert a kutatások önmagukban is értelmezhető eredményekre vezettek.


céloknak megfelelően összeállított kérdéssor adott lehetőséget arra, hogy differenciáltan jelenjenek meg a veszélyhelyzetek kezelésekor felmerülő szakmai aspektusok, és alkalmas arra, hogy hasonló kutatásban referencia pontként használható legyen.

**4.3. A kérdőív eredményeinek kiértékelése**

A kérdésekre adott válaszokat a megkérdezettek egy 7-es osztású skálán jelölték be, amelyen az „1” jelölése jelenti a egyáltalán nem megfelelő a feladat ellátásához, a „7” jelölése pedig a teljesen alkalmas a feladat ellátására. Egyszerű összevetés alapján értékeltem az eredményeket. A felsorolt alkalmazott tűzoltói beavatkozásoknál a védekezéssel (technikai értelemben) kapcsolatos felkészültséget, a beavatkozás technikai felkészültségét, és a kiképzett ség megítélését tudták a skálán kifejezni.

**Tűzoltó szakmai gyakorlat**

![Diagram of Tűzoltó szakmai gyakorlat]

A tűzoltó szakmai gyakorlat, és a tűzoltásvezetői gyakorlat fontos eleme volt a minta kiválasztásának. Mivel a Fővárosi Katasztrófavédelmi Igazgatóság tűzoltásvezetői állományának 2/3-ad része részt vett a vizsgálatban, ezért azt reprezentatív felmérésnek tekintettem. A prominencia kutatást alátámasztja, hogy a megkérdezettek 93%-a több mint 10 éves tűzoltói, és 73%-a több mint 10 éves tűzoltásvezetői gyakorlattal rendelkezik. (21-22 ábra) Az életkoruk alapján megvizsgálva a válaszadókat láthatjuk, hogy mindössze 14% volt 30-35 év közötti, míg a többiek (86%) 35 év fölöttiek voltak, amely a szakmai tapasztalat mellett az élettapasztalatra is enged következtetni.(23.ábra)
Tűzoltásvezetői gyakorlat

22. ábra A megkérdezettek tűzoltásvezetői gyakorlata (készítette: Rácz Sándor)

23. ábra A megkérdezettek életkora (készítette: Rácz Sándor)

A kérdőívek elemzése során a három szempont szerinti megközelítést értékelve (amely tartalmazza a szöveges szélső értékes, és a számmal kifejezhető szélső értékű kérdőívet is) azt a megállapítást tettem, hogy a középértéktől nagyobb elmozdulás volt kimutatható pozitív irányba a kiképzettség tekintetében általánosságban, mint a technikai értelemben vett védelem, és a technikai értelemben vett beavatkozás eszközei esetében. Összehasonlítva a két módszert, a vélemény intenzitását bátrabban jelenítették meg a számos szélső értékű kérdőívnél a közép értékhez képest (24. ábra).

A számszerű szélső értéknél 40% értékelte 6-osra, és 30% 5-ösre a képzettséget, 10% volt a 4-es (tehát középérték), 3-asra 11 %, valamint 5% alatti volt a 2-es, és a 7-es érték, 1-es érték nem volt.
A szöveges szélső érték esetében 24% értékelte 6-osra, és 49% 5-ösre a képzettséget, 15% volt a 4-es (tehát középérték), 8% volt a 3-as, és 2,5% volt a 2-es, és a 7-es érték, 1-es érték nem volt.

Összehasonlítva a két módszert (Készítette: Rácz Sándor)

Az igazán pozitív, és negatív megítélés az általános tűzoltói beavatkozásokat vizsgálva csekély volt mindkét módszer esetében. A másik két szempontot vizsgálva, a legtöbben az 5-ös számot választották a skálán, amely alapján láthatóan kritikusabban vélekednek az technikai lehetőségekről, mint a kiképzettségről.

24. ábra Összehasonlítva a két módszert (Készítette: Rácz Sándor)

Tűzoltásvezetők véleménye az általános tűzoltói felkészültségről tűzoltás, műszaki mentés esetén számos szélső értékkel

25. ábra Tűzoltásvezetők véleménye az általános tűzoltói felkészültségről tűzoltás, műszaki mentés esetén számos szélső értékel (58 fő) (Készítette: Rácz Sándor)
Tűzoltásvezetők véleménye az általános tűzoltói felkészültségről tűzoltás, műszaki mentés esetén szöveges szélső értékekkel

Összehasonlítva a két módszert (25-26 ábra), arra a következtetésre jutottam, hogy a görbék jellegét tekintve nincs szignifikáns különbség a két módszer között, viszont a számos szélső értékes skála használatával megjelentek olyan szélső értékek, amelyek a nagyon erős vélekedéseket is tükrözték. Mivel alapvetően attitűdvizsgálatnak tekintettem a kutatásomnak ezt a részét, ezért nem tekintettem hibás megközelítésnek, hogy a továbbiakban kizárólag a számos szélsőértékű kérdőívek eredményével dolgozzak. A kiképzettség tekintetében sokkal inkább érezhető volt a pozitív, valamint a negatív attitűd megjelenése, míg a technikai ellátottság tekintetében jóval visszafogottabban értékeltek a megkérdezettek. Mivel a kutatásom ezen része a kiképzettséget vizsgálta nagyobb hangsúlyal, az attitűd értékelésnél nagyobb eltérést is jelenített meg a speciális, és az általános beavatkozások között. A minta így 58 főre csökkent, amely az FKI tűzoltásvezetői állományának kevesebb mint 40%-a, de továbbra is reprezentatív vizsgálatnak tekintettem, mivel láthatóan nem jelent meg a lényeget érintő változás a két módszer között, ezáltal a mintának választott 97 fő véleményeként értékelhető.
129

A különböző speciális beavatkozások összehasonlítása a védelem tekintetében

(Készítette: Rácz Sándor)

Az általános felkészültség értékelése (védelem)
Felkészültség nagy alapterületű létesítményeknél (védelem)
Felkészültség veszélyes anyag környezetében (védelem)
Felkészültség villamos hálózatok, berendezések környezetében (védelem)
Felkészültség sugárveszélyes környezetben (védelem)

27. ábra A különböző speciális beavatkozások összehasonlítása a védelem tekintetében
(Készítette: Rácz Sándor)

A technikai ellátottságot (védelem eszközei, beavatkozás eszközei) véleményező görbék (27-28.ábra) súlypontja a nagy alapterületű létesítményeknél és a villamos hálózatok, berendezésekénél történő tűzoltói beavatkozások környezetében szintén a skála jobb oldalán, az általános feladatokhoz hasonlóan letek értékelve. Igazán pozitív (7-es) megítélés az általános tűzoltói beavatkozásokat vizsgálva 7 db volt. Viszont a veszélyes anyag jelenlétében történő beavatkozáshoz csak közepesnek ítéli meg a védelmet, és a beavatkozást biztosító eszközöket. A sugárveszélyes környezetben kifejezetten a skála bal oldalára (2-es, és 3-as 43%) toldott a súlypont. A fentiek megerősítik a feltételezésemet, hogy ezeknek a speciális beavatkozásoknak más az eszközígenye, mint az általános tűzoltói munkának, amellyel ez alapján a megkérdezettek tisztában is vannak. A KML munkáját fontosnak, sőt az I. számú kérdőív nyílt kérdésére adott válaszokkal egyértelműen megkerülhetetlennek tekintik. Az I. számú kérdőívből kapott válaszokból az is kiderül, hogy legszívesebben megvárnak a káresemény felszámolásához a KML-t, mert tisztában vannak a technikai, különös tekintettel a mérésekhez használható műszerezettségük előnyeivel.
A különböző speciális beavatkozások összehasonlítása a beavatkozás technikai feltételeinek tekintetében

(Készítette: Rácz Sándor)

A különböző speciális beavatkozások összehasonlítása a kiképzettség tekintetében

(Készítette: Rácz Sándor)

A kiképzettség megítélése során, látható volt a sugárveszélyes területen történő beavatkozásokhoz köthető felkészültségről való negatív vélekedés, azonban sokan
(18fő) semlegesen (középértéken) vélekedett erről (29. ábra). Erős dominancia jellemezte a nagy alapterületű létesítmények káreseteihez köthető képesség megítélését az 5-ös értékehez (18 fő), és még nagyobb az általános tűzoltói beavatkozásokhoz (23 fő), valamint a villamos hálózatok és berendezések tűzeinél történő tűzoltói beavatkozásokhoz (19 fő). A nagy alapterületű létesítmények tűzeihez köthető felkészültséget semlegesre (13 fő), és 6-os értékűre (15 fő) is értékelte, mert bár általános tűzoltási elemekre épül ez a tevékenység általában hosszan elhúzódó, nagy erőforrás igényű a káresetfelszámolás.

Oszlopdiagramon megjelenítve is egyértelműen tapasztalható a kiképzettség különbségének a megítélése a tűzoltásvezetői állomány körében az általános tűzoltói munka, és a speciálisnak tekintett sugárveszélyes beavatkozásokhoz köthető felkészültség tekintetében (30. ábra).

![Általános kiképzettség](image1)

![Kiképzettség sugárveszélyes környezetben](image2)

30. ábra Az általános, és a sugárveszélyes tevékenységhez köthető kiképzettség, összehasonlítása (Készítette: Rácz Sándor)

Megvizsgáltam továbbá a tűzoltásvezetők szakmai tapasztalatának és a kérdésekre adott válaszértékeiknek a összefüggését, mert az adatok elemzése közben arra a feltételezésre jutottam, hogy egyes — speciális tudást igénylő — tűzoltói feladatok esetén a szakmai tapasztalat növekedésével a saját tudásuk értékelése fordítottan arányos. A feltételezésem igazolásaként korrelációs vizsgálatot végeztem a rendelkezésemre álló adatokkal, a tűzoltásvezetők tapasztalata, és a saját képzettségük megítélése terén az általam kiválasztott általános feladatra történő, és a sugárveszélyes feladatra történő felkészülés között. Matematikai statisztika módszereivel (Pearson-féle korreláció (r) számítás és lineáris regressziós görbék az adatokra való illesztésével történő korrelációval (r²) meghatározása) ellenőriztem a feltevésemet. A korrelációs koeficientes (r) az adatok közötti kapcsolat erősségét mutatja, ha az r értéke: 0-0,25 között van akkor nincs kapcsolat vagy igen gyenge, 0,25-0,50 gyenge a kapcsolat 0,50-0,75 r tényező esetében mérsékelten erős vagy erős kapcsolatot van 0,75-1,00 r érték igen erős kapcsolatot jelent. A determinálsági koeficientes (r²) érték azt fejezi ki, hogy az egyik
változó változásai milyen mértékben függnek össze a másik változó változásaival, tehát előre jelezhető-e egyik változásából a másik változó. Ha az \( r = 0.15 \), az \( r^2 = 0.025 \), akkor 15%-ban előre jelezhető a független változóból a függő változó.

![Képzettség értékelése általános feladat esetében
Tűzoltásvezetői tapasztalat függvényében](image1)

\[ r = -0.15809 \]

\[ y = -0.0364x + 5.5323 \]

\[ R^2 = 0.025 \]

31. ábra Általános feladatokhoz tartozó képzettség és tűzoltásvezetői tapasztalat összefüggése
(Készítette: Rácz Sándor)

A tűzoltásvezetők általános tűzoltói feladatra történő felkészülésükre adott attitűdértékeket Pearson féle rangkorreláció módszerével megvizsgálva (\( r = -0.15809 \)) összefüggést találtam az adatok között. (31.ábra) A determináltsági koefficiens \( (r^2) \) alapján, ebben az esetben 15%-ban lehet következtetni a tapasztalat növekedésével a képzettségi megítélés csökkenésére,

\[ y = -0.0401x + 3.8568 \]

\[ R^2 = 0.0303 \]

32. ábra Sugárveszélyes feladatokhoz tartozó képzettség és tűzoltásvezetői tapasztalat összefüggése
(Készítette: Rácz Sándor)
A tűzoltásvezetők általános tűzoltói feladatra történő felkészültségükre adott attitűdértékeket Pearson féle rangkorreláció módszerével megvizsgálva ($r = -0.17417$) összefüggést találtam az adatok között. (32.ábra) A determináltsági koeficiens ($r^2$) alapján 17% ban lehet következtetni ebben az esetben, a tapasztalat növekedésével a képzettségi megítélés csökkenésére.

A vizsgálat eredményeként, mindkét esetben igen gyenge negatív korrelációs összefüggést találtam, amely részben igazolta a feltételezésem. Mivel mindkét vizsgált esetben hasonló összefüggés volt tapasztalható, azt a megállapítást tettem, hogy ez vélhetően a nagyobb számban megélt események során felhalmozott tapasztalatból ered, amiket a pályafutásuk alatt megoldottak. Az attitűdértékek átlaga, az általános feladatra történő felkészültség esetében magasabbak voltak, de ezek az értékek a korábbi ábrán (29. ábra) már kimutathatók voltak. Mindenesetre, mind az általános feladatokhoz tartozó, mind pedig a sugárveszélyes feladatokhoz társuló képzettség esetében a lineáris regressziós görbe hasonló, amely előre jelzi azt a folyamatot, hogy a tűzoltói gyakorlat növekedésével kritikusabbá válik a munkáját végző a saját felkészültségét illetően. Ez a felismerés arra enged következtetni, hogy a tapasztaltabb tűzoltók — a tapasztalatukból adódóan — jobban tisztában vannak a veszélyforrások természetével, és a lehetséges hatásaival.

4.4. Részkövetkeztetések

Az általam szerkesztett kérdőívekkel elvégzett vizsgálatok alapján bebizonyítottam, hogy a speciális (különös tekintettel a sugárveszélyes területen, és a veszélyes anyag jelenlétében végrehajtott) tűzoltói beavatkozásokat érintő technikai feltételek, és kiképzettség tekintetében a válaszadók véleménye eltér az általános tűzoltói beavatkozások hasonló szempontok szerinti értékelésétől.

A vizsgálatok eredményeit figyelembe véve megállapítottam, hogy a mentő tűzvédelemben, a végrehajtás szintjén érintett tűzoltásvezetők az általános kiképzettségüket jónak ítélik meg, ellenben a látens veszélyekkel kapcsolatba hozható tevékenység esetén ugyanez nem jelenik meg súlyozottan pozitív irányba a differenciáláskála értékein. A látens veszélyeket rejtő feszültség alatti beavatkozások során már kialakult egy megfelelő rutin a végrehajtásban, és az állomány feszültség mérésére alkalmas mérőműszerekkel rendelkezik is. Megvizsgáltam továbbá a tűzoltásvezetők szakmai tapasztalatának és a kérdésekre adott válaszértékeiknek a összefüggését, amely során arra a feltételezésre jutottam, hogy egyes — speciális tudást igénylő — tűzoltói feladatok esetén a szakmai tapasztalat növekedésével a
saját tudásuk értékelése fordítottan arányos. A feltételezésem igazolásaként korrelációs vizsgálatot végeztem a rendelkezésemre álló adatokkal, amely eredményeként gyenge negatív korrelációs összefüggést találtam a tűzoltásvezetők tapasztalata, és a saját képzettségük megítélése terén. A tűzoltásvezetői tapasztalat gyenge negatív összefüggése a képzettség megítéléseével azt bizonyítja — amellett, hogy előre jelezhető a szakmai tapasztalattal emelkedő kismértékű pesszimizmus — hogy a tűzoltásvezetők részére folyamatos kell a tudásszintjüket frissíteni, annak érdekében, hogy speciális eseményeknél is támaszkodhassanak a saját tudásukra is, ameddig nagyobb képzettségű egységek (KML) a helyszíne érkeznének. Ezekhez természetesen a tárgyi, és oktatási feltételeket meg kell teremteni.

A kérdőívek elemzése során bebizonyosodott, hogy szívesen alkalmaznák a kárhelyszínen a KML állományát, amely a korábbiakban kifejtették alapján, a beavatkozások korai szakaszának megjelenik a tűzoltók részéről életmentés esetében, viszont — különösen sugárveszélyes területen — egy ismeretlen tényező jelenlétére esetén már megfontolnánk a beavatkozás késleltetését a biztonság érdekében. Mind ezek rávilágítottak arra a tényre, hogy a bizonytalanság, a mért értékek hiányából adódik. A felderítés szükségességét minden tűzoltó ismeri, mert a képzése során megtanulta, és a munkája során, a vonatkozó jogszabályok értelmében [2][3] kötelessége elvégzési. A vizuális megerősítéssel, vagy méréssel nem alátámasztható felderítésből fakadó probléma kiadhat a beavatkozás sikerére, hiszen elsődleges szervező munkát sem tudunk végezni a szükséges információk nélkül.
5. A TŰZOLTÓK FELKÉSZÍTÉSÉNEK LEHETŐSÉGEI

5.1. A megismerés folyamata és a kognitív térkép fejlesztése

Amennyiben figyelembe vesszük, hogy a tűzoltó begyakorolt metódusok alapján végzi a feladatát, legyen az szerelési feladat, tűzoltási, vagy életmentési feladat, vagy akár valamilyen technikai eszköz, egyéb szakfelszerelés, kisgép, berendezés kezelése láthatjuk, hogy egy nagyon fontos elem szükséges még a hatékonyság, szakszerű kialakításához, amely nem más, mint a gyakorlati foglalkozások tudatos elméleti, és gyakorlati felépítése. [77] A káresetek során szerzett tapasztalatok, legyenek akár negatív, akár pozitívak a legfontosabbak a tűzoltó életében, hiszen találkozik egy megoldási mintával, amelyet már egyszer ki tudott próbálni, és levonhatta a működésének, előnyének, hátrányának a tanulságait. A gondosan megtervezett, és végrehajtott gyakorlat, amely megalapozott tudásra épülve gyakorlatiasan kínál a tudásunkba beépíthető, és használható mintát, lehetőséget ad tudásunk bővítésére, a káresetek alatt jelentkező valódi veszélyhelyzetekre adott válaszlépések kipróbálására, hatásainak vizsgálatára. [78] A kötelező jelleggel elvégzett felületes oktatási idő, legyen az elméleti, vagy gyakorlati, nemhogy nem juttat minket használható tudáshoz, de hamis biztonságérzetet is adhat. A valósághoz közeli körülményekkel végrehajtott gyakorlatok során olyan hatások megélésével tudunk döntési, és végrehajtó beavatkozó képességet fejleszteni, amelyek a végrehajtás során is előfordulhatnak.

A tűzoltó igyekszik azokat a megoldásokat választani, amelyek egyrészt:

1. Kiképzése során, vagy korábbi gyakorlata során már alkalmazta
2. Végrehajtható, vagy van esély a végrehajtás sikerességére
3. Az adott körülmények között a leginkább célravezetők

A tűzoltóság eddigi története során hatalmas tapasztalati tőkére és tudásra tett ezert. Napjaink információbőségében ezek az ismeretek egyrészt exponentiálisan gyarapodnak, másrészt mindenki számára elérhetővé válnak. Az információk gyarapodása miatt a jövő generációi megfelelő tudástárhoz juthatnak hozzá, azonban ezeknek az ismereteknek a felhasználhatósága függ a rendszerezésbe fektetett energiától is. Az információkat valamilyen módon rendszerezni kell, továbbá a felhasználhatóságuknak megfelelően — hatásuk minősége alapján — további kategóriákba szükséges besorolni őket.
A hagyományosan társadalomtudományi, de leginkább természettudományi megközelítés nem feltétlenül alkalmas a tűzoltói munka következtében felismert információk besorolására. A természettudományok szerinti osztályozás alapján élő, és élettelen, tovább bontva fizikai, kémiai, biológiai, radiológiai inputok jelen vannak, azonban a tűzoltók szempontjából szükségszürelő az önkényes osztályozás is. A kognitív térképeink kialakulásában nélkülözhetetlen az átült események [51].

A véleményben a térérzékelési folyamatokat vizsgáljuk, megállapítható, hogy a személyes tapasztalaton alapuló ismereteink tartósabbak, pontosabbak és a mentális térképeink kialakításában meghatározóbbak, mint külső forrásból szerzett tudásunk [79]. A véleményem, és tűzoltói tapasztalatom alapján, a stressz alatt megélt események, és a nyugodt környezetben végrehajtott feladatok során szerzett ismeretanyag tartóssága különböző. Másképpen van hatással az egyénre egy óvatlan mozdulat, vagy átgondolatlan döntés után elszenvedett negatív következmény egy káreseti beavatkozásnál, mint a gyakorlaton vétett baki. Ez a következmény adóhat a szervezet elmarasztalásából, a keletkezett probléma anyagi, egészségügyi aspektusából, és a munkatársak megítéléséből.

A tűzoltói szemlélet, különösen mentési eljárásoknál sohasem passzív, hanem aktív, mert a környezeti változók elemzése a káresemény alatti folyamatos felderítést szolgálja, ezért biztonsági kérdés is egyben. Fontos, hogy minden eseménynézletet feldolgozzunk egy káreseti beavatkozásnál, hiszen nincs tét nélküli aktív folyamat ezeknél az eljárásoknál. A tanulás szempontjából a jól megoldott probléma pozitív megerősítést, a rosszul megoldott probléma negatív következményt jelent. Mindkét megerősítés hasznos, de természetesen az érdekünk az, hogy minél kevesebb legyen a negatív élmény.

Az információk helyes feldolgozása, valamint azokból eredményes munkavégzés szervezése létkérdés egy időben szüks megzavarat biztosító esemény alatt. Az érzékszerveinkkel befogadott adatok döntési alapokat jelentenek a közvetlen végrehajtásban érintett, de azok vezetői számára is. (16.számú táblázat).

| Bőr   | ⇒ tapintás, hőérzet  |
| Fül   | ⇒ hallás, egyensúlyozás |
| Orr   | ⇒ szaglás              |
| Nyelv | ⇒ ízlés                 |
| Szem  | ⇒ látás                 |
| Végtagok | ⇒ koordináció     |

16.számú táblázat Érzékszerveink, és azok érzékelése (készítette: Rácz Sándor)

A külvilág megismerése jellemzően az anyagok tulajdonságain keresztül történik. A korábban tapasztalt tulajdonság nem azonos az anyaggal, csak egy részmegközelítése. A
tűzoltók esetében számtalan anyagtulajdonság, tárgyak jellegzetessége, megjelenési formája az, amin keresztül felismeri a környezetében található veszélyeket. A tűzoltó szakma velejárója, hogy folyamatosan ismereteket gyűjt, rendszerez, válaszokat ad a felmerülő problémákra. Ez egy empirikus megközelítés, hiszen alap természettudományi tudásunkat bővíjtük, és alkalmazott speciális eljárásaink hatékonyságát rögzítjük az elménkben, hogy később előhívjuk egy speciális esemény megoldásakor.

A mentális térképünk fejlődése tehát az érzékszerveink által befogadott, és értelmezett inputoktól, de még inkább azok a környezettel alkotott kölcsönhatásaitól fejlődik. [80] Az érzékszerveink által befogadott információk, és a kialakult szituációk hatásai határozzák meg az elraktározott emlékeink, tapasztalásaink fontosságát. Ezek, a később automatizmussá alakuló felismerési folyamatok adhatnak biztonságot a káreseteknél. A hőérzet, illetve annak elviselhetősége korábbi empirikus folyamataink alapján ad lehetőséget, hogy az elviselés irányába, vagy az elkerülés irányába mozduljunk-e el. A hivatásos állományúak eszüje[81] szerint az életmentést, akár életünk kockázatásával is végre kell hajtani. Ezért a hőterhelés elviselése, illetve olyan környezetbe való behatolás, munkavégzés, amelyben az élő szervezetre veszélyt jelentő állapotok uralkodnak csak úgy lehetséges, hogy a feladatot elrendelő, és a végrehajtó személyzet tudatosan van a korláttainak, és a lehetőségeinek is. Ez egyrészt szakmai megközelítés, tehát kiképzett vagyok, vannak eszközeim a védelemre, és feladat végrehajtására, van megoldási alternatívám, másrészt van tapasztalatom, találkoztam hasonló hatással már korábban, és ismerem a korlátaimat, tehát fejlett a mentális térképem

5.2. A mérés fontossága

A mérés, mint tudományos megismerési módszer azt jelenti, hogy a mérendő mennyiséget hasonlítjuk össze az egységgel, és megállapítjuk, hogy az hányszorosa az egységnek. A mért mennyiség tehát két részből áll, egyrészt a mérszámiból, másrészt a választott mértékegységből. Például a légző palackból felhasználható levegőmennyiség (6 literes palack esetében 300 bar nyomásnál) mintegy 1800 liter. Ebben az esetben a liter a mértékegység, az 1800 pedig a mérőszám.

A mérés szükségessége a beavatkozásoknál életbevágó, hiszen a tűzoltó levegőfogyasztásához, tehát a beavatkozás során veszélyes környezetben eltöltött időhöz is kapcsolódnak azok az alapmennyiségi egységek, mint a liter, és a perc, és a belölük

118 „szolgálati kötelezettségemet, ha kell, életem kockázatásával is teljesítem” 2015. XLII. trv. 44 § (2) bekezdés
származtatott mértékegység a liter/perc. Amennyiben tudjuk, hogy az átlag tűzoltói munka során kb.40-60 liter/perces levegőfogyasztással kell számítani, tudhatjuk, hogy a rendelkezésre álló levegőmennyiség mennyi időre elegendő a beavatkozás során olyan légterben, amely egyébként emberi használatra nem alkalmas.

Veszélyes anyagok jelenlétében is vizsgálandók azok az anyagmennyiségek, amelyek káros hatást fejthetnek ki a beavatkozókra. Sugárveszélyes területen a Sv/óra, vagy mSv/óra származtatott mértékegység alapján tudunk következtetni a dóziskorlát elérésének az időpontjára.

A távolság, és a magasság alapmértékegysége a méter, amely szintén alapinformáció egy tűzoltó munkája során. A társasházak, vagy egyéb épületek tüzeinél, a magasból mentő különleges tűzoltógépjárművek (létrák, emelők) bevethetetlenségét tudjuk az emeletek számával, és az egyes szintek magasságával megfeleltetni. A tűzoltó tömlők hosszúsága (20 méter), és azok egységnyi szorzata adj meg a felhasználó darabszámot, mind súlyozva, mind pedig magasba szerelésnél pl. lakóépületek esetében.[82]

A katasztrófavédelem térinformatikai rendszere a DÖMI119 is távolság függvényében határozza az adott eseményhez szükséges tűzoltó egységeket azok térbeni elhelyezkedésük alapján.

A tömeg, az idő, a hőmérséklet mérhetősége szintén közismert mértékegység, és alkalmazandó minden tűzoltói eseménykezelésnél. Az anyagok fizikai változása a hőmérséklet függvényében szintén alapinformáció a tűzoltó számára. Az aluminium kb. 600 °C fokon olvad, de az acélszerkezetek is elveszítik állékonyságuk 50%-át 500-600 °C fok között. Ezeket a méréseket természetesen nem minden esetben végezzük el tűzoltói munkavégzés közben, de következtetni tudunk a végbemenő változásokra korábbi ismereteinkből.

Az időtényezőt viszont szükséges számon tartanunk, hiszen a korábban említett példa esetében, egy veszélyes, zárt környezetben tartózkodó tűzoltó légzőkészülékének rendelkezésre állása, illetve korlátai számíthatók, így következtetni lehet a személy veszélyeztetettségére az idő múlásával.[83][84]

Egy tűzesethez felhasználó vízmennyiség összefüggést mutat a tűz alapterületével. A méter, a liter, és a perc, mint mértékegységből tudjuk meghatározni az időegységre vonatkoztatott oltóvíz mennyiségét (liter/perc), amely szükséges az adott terület (m²) oltásához, súlyozva az anyagokra jellemző eltérésekkel.

119 Pajzs szoftvert támogató távolságmátrix alapon működő szoftver, amely a legközelebb található, az esemény felszámolására alkalmas tűzoltó gépjárművet rendeli hozzá az eseményhez (szerző)
Az előzőekből kitűnik, hogy bár nem is tudatosul bennünk, de a helyzetek felmérése, és a lehetséges válaszlépéseink mind **mért adatoktól függnek.**

A tűzoltók biztonsága tehát függ a pontosan begyűjtött adatoktól, valamint azok helyes felhasználásától is.

### 5.2.1. Mérési pontosság

Néhány esetben teljesen elfogadott a mérési hiba jelenléte, vannak azonban munkák, amelyeknél nem fér bele a mérések alkalmával elkövetett hibázás, azonban mérési pontatlanság előfordulhat. A tűzoltó, a munkavégzése során igyekszik lényegre törően hatékonyan dolgozni, mert az adott helyzetben alkalmazható, a célértéket kielégítő egyszerű megoldási verziót részesíti előnyben.[19] A korábbi, általa megérlelt sikeresen végrehajtott megoldások közül választ egyet. A tűzoltói mérce, tehát az egzakt mérésen túli előzetes szubjektív hatékonyságvizsgálat is döntő az eseménykezeléshez alkalmazott eljárások kiválasztása tekintetében. Ez elkerülhetetlen folyamat, és nem zárja ki a szakszerű munkavégzést, tehát elengedhetetlen a mentális térkép fejlettsége.

### 5.2.2. A megszerzett információ felhasználása

A tűzoltói gondolkodást a megismerésre törekvés, a lehetséges verziók felállításának képessége, kreativitás, fantázia, kollektív bölcsesség (saját, vagy más korábbi tapasztalatainak felhasználása) intuitió, és folyamatos kétkedés jellemzi. Mindezen képességeket a jogi normák betartása mellett kell használni.

A tűzoltókra jellemző gondolkodási módokat ki lehet egészíteni olyan alapvetően — a mentési eljárás szempontjából hasznos — elemekkel, amelyek kifejezetten meghatározzák az eljárásban résztvevők sikerességét [2].

A veszélyes munkát végzőknek elsősorban képzésük, gyakorlatuk, védeőeszközökkel történő ellátottságuk révén tehetjük biztonságosabbá a munkájukat. A veszélyes munkahelyek, leginkább a veszélyforrások iránya, annak várható hatása szerint, illetve a munkavégzés gyakorolt hatása szerint csoportosíthatók. A magasban, vagy veszélyes anyag, sugárzó anyag környezetében, hőterhelésben, vagy robbanásveszélyes környezetben dolgozók védelme elképzelhetetlen védfelszerelés, és egyéb technikai támogatás nélkül. Azonban a munkavégzés biztonsági szabályainak a betartása az, amely a legnagyobb védelmet jelentheti. [85, 211 o.]

Az ellenőrzött környezettől jelentősen eltérnek a tűzoltói bevavatkozások szinterei, amelyek a veszélyeztető tényezők egyidejű jelenlétével rendelkeznek. Ebben a veszélyes
környezetben nem lehetséges olyan munkakörnyezetet kialakítani, amely teljesen kizárja a veszélyeztető tényezőket. A gyakorlatokon, és korábban megjegyezték, hogy a védőeszközök szakszerű használata mellett jelentős csökkenti a veszélyeztetettséget. A teljes biztonság a káresemények alatt szinte elképzelhetetlen, viszont elkerülve a bizonytalan kimenetelű, vagy nem előrelátható eredményt hozó eseménykezelési megoldásokat, növelhetjük a biztonságot.

Felmerülhet a kérdés, hogy egyáltalán lehetséges-e ez egy olyan esetben, amikor az emberi érzékszervekkel beazonosítható veszélyek rejtve vannak, illetve jelentős mértékben látáson jelentkeznek. Itt elsősorban robbanásveszélyes környezetre, veszélyes anyagok jelenlétére, sugárforrásokra kell gondolni, de az elektromos energia környezetén belül végzett munka is ilyen. Meghatározni a veszély nagyságát, a várható hatásokkal egyetemben, különösen a munka végzésére rendelkezésre álló idő miatt nehéz feladat. Az időnyomás alatt hozott döntések soha nem lehetnek optimálisak. Egy problémát megoldva, továbbiakkal találkozhatunk, amelyek további intézkedést igényelnek, és erőket köthetnek le. A sorrendiség a legfontosabb, tehát a legnagyobb hatást kiváltó problémára kell intézkednünk, amelyben az élet védelmére tett intézkedések a legfontosabbak. A tűzesetek, vagy nagyobb erőt igénylő feladatoknál rendszerint jelentkeznek a feladattörődások, amelyek azok rangsorolását igénylik. Minél hatékonyabb egy feladatvégrehajtás, annál kevesebb időt kell tölteni annak megoldásával, felszámolásával. [86] A cél, hogy semleges állapotot hozzunk létre a környezetben, amely az aktív folyamatok felszámolását jelenti. Amennyiben a tűzoltás alapvető protokollját vizsgáljuk, amelyben sorrendben a tűz körülhatárolása, a tűz lefeléfúrása, valamint a végleges oltás a sorrend, látható, hogy az első aktív, és dinamikus folyamat (a tűzoltás előkészítése miatt, amely többször megismétlődhet), míg a második, harmadik úgy aktív, hogy részint statikus, és már tervezhető mellette más feladat. Az aktív folyamat megfelelő létszámú, és felszereltségű aktív beavatkozókat igényel, amely szakaszokat követik olyan szakaszok, amely már jelentős létszámoskéntéssel végezhetők, így más feladathoz csoportosítható az így felszabaduló létszám. Egy ilyen folyamatnak tehát van kevésbé aktív szakasza, amely alatt nem szükséges az eredetileg ide kalkulált erőforrás.
5.3. A probléma felismerése

A problémák felismerése, és azokra adott hatékony válaszok megkövetelik, hogy minden részletet megvizsgáljunk, amely hatással van az eredményre, és kizárjuk annak a lehetőségét, hogy nem az optimális protokollt, erőt vagy eszközt használjuk a végrehajtásra.

Az elméletorientált és gyakorlatoriortantált problémakutatás, és megoldási lehetőségek kidolgozása egyaránt jelen van a tűzoltói munkában. A korábbiakban kifejették alapján, mennyiségi meghatározás, tehát mért értékeken alapuló tudás nélkül korrekt javaslatot tenni a munkavégzés részleteire, az elvégzendő feladatokra, de a képzés felépítésére is hatással van ez a kutatási szemlélet. Az elméleti, és gyakorlati képzés egymásra épülése nem lehet kérdés, azonban a végrehajtás folyamatában élesen elváló a kettő egymástól. A veszélyes szituációkban, az elméleti tudásból építkezve nem lehet jó megoldási verziókat meghatároznia, csak a már korábban sikerrel alkalmazott módszereket lehet alkalmazni, különösen ha azok hatékonyságát egymáshoz viszonyítva is próbáltak már összehasonlíttani a beavatkozást végzők. Ezt tekinthetjük egyfajta kutatási tevékenységnek, hiszen egy összehasonlítható elemzés vezet egy jobb módszer alkalmazhatóságához.

Mit akar megismerni a tűzoltó, amennyiben problémával áll szemben?
Ez attól függ, hogy mennyi ideje van a felkészülésre. Amennyiben alkalmazott, vagy gyakorlatoriortantált kutatást végez, akkor a korábbi elméleti ismeretei gyakorlatba történő átültetését próbálja kitapasztalni, úgy hogy az alapvető cél kitűzésével, a rendelkezésre álló erőforrásokból optimális protokollt alkot, amely egy megszerzett tudáshoz fóg vezetni. Ezek kialakulása a gyakorlatok, és a káresetek során megszerzett tapasztalatok mennyiségtől, és minőségétől függnak.

Ezt mindenféle meg kell előznie egy alapkutatásnak, vagy elméletorientált kutatásnak, amely esetben egy új minőségű tudást akarunk elérni, méghozzá abból a célból, hogy vagy bővitsük a már meglévő tudásunkat a speciális témából. A Comeniusi elveket kell figyelembe vennünk, abból a célból, hogy egy biztos alapokon nyugvó erős tárgyi tudással rendelkezzünk.

Leginkább Comenius\textsuperscript{120} alapelveivel összhangban lehetne vizsgálni azokat a folyamatokat, amelyek a tűzoltásvezetőben is lezajlanak, miközben a szakmai fejlődése lezajlik [87].

\textsuperscript{120} Johannes Amos Comenius cseh pedagógus, és író, a modern didaktikai alapelvek megalkotója
Szakmai fejlődést biztosító elvek:
- szemléletesség (konkrét tapasztalatszerzés, káreseteknél, gyakorlatokon történő megfigyeléssel)
- tudatosság (a megértés nélküli tudás helyett az ismeretek tudatos elsajátítása, kötve a valós szituációkhoz)
- rendszeresség (az oktatott anyag egymásra épülő)
- következetesség (az életkori sajátosság, és az értelmi (szakmai) fejlődés szintjeit is figyelembe veszi)
- a tananyag koncentrikus bővítésének elve (az ismeretanyag fokozatos bővítésének az elve, amely például moduláris rendszerű oktatásnál lehetséges)

Az emlékezet
A „tüzoltó képességeink” kialakulása, és fejlettsége a tapasztalatunktól, és a tudatosan elsajátított ismeretinktől függne. Szükséges megismernünk az emlékezetünk működését a témával kapcsolatban. A memóriánk tulajdonképpen a befogadott külső információk, és a tapasztalat elsajátítása, és megtartása.

A memóriánk hipotetikus szakaszai: kódolás (szenzoros analízis), tárolás (a lenyomat tartós megőrzése), előhívás (felidézés)

A rövid távú emlékezet, és a hosszú távú emlékezet közül a tartósan tárolt elemekhez köthető hosszú távú emlékezet deklaratív (explicit), és nem-deklaratív (implicit) elemeit vizsgálva, megállapíttattam, hogy a tűzoltói tevékenység esetében mindkettő fontos. A deklaratív (pl.: tudom, hogy az Acetilén gáz alsó-, és felső robbanási határértéke), és a nem-deklaratív (gyakorlati készségek fejlettsége pl.:szerelési foglalkozás, óvatosság pl.: negatív élmény után) adják a tűzoltó képzettségét. Tehát az implicit memóriánk egy korábbi tudásanyagunkat alkalmazza automatikusan, mindenféle tudatosság nélkül.[88]

A deklaratív memóriánk elemei:
Epizodikus emlékezet: személyesen megtapasztalt, időben, és térben meghatározott eseményen keresztül
Szemantikus emlékezet: Általános tudásra, egy szó jelentésére vonatkozó memória.
Kontextuális szemantikus emlékezet esetében az információ kódolása függ a helyszíntől, és az időponttól, míg a nem kontextuális szemantikus emlékezet ezektől független.
Munka emlékezet: Az aktuális feladat megértéséhez, tervezéshez alkalmazott memória.
A nem deklaratív memóriánk elemei:

**Priming:** Egy korábbi találkozás az információval, hozzájárul a felidézéshez, vagy a felismeréshez.

**Procedurális:** Készségek elsajátítása, amelyhez többszöri gyakorlás kapcsolható. Mérhető a készség fejlődése (időintervallum esőkkenése, pontosabb eszközhasználat)

**Kondicionálás:** Bizonyos ingerekre adott válasza az idegrendszerünknek (társítás).

A képzettségünk tekintetében tehát mind explicit, mind implicit elemek működnek. Nem lehetséges, csak az egyiket fejleszteni, és a tűzoltói tevékenység során véleményem szerint nem is lehetséges. [88]

A felkészítés rendszerében, ezen összefüggések alapján a tudásanyag bővítés során fontosnak ítélem a következő szempontok szerinti felkészítést.

**A tananyag koncentrikus bővítésének az elve:**

- az egyszerűtől az összetett,
- a konkréttól az elvont,
- a ténylegtől a következettettedek,
- a könnyűtől a nehéz,
- a közlelőtől a távoli felé,

A feltételezésem alapján, ezeken az alapelvéken keresztül lehet leginkább értelmezni egy tanulási fejlődést, legyen az egy szakmai fejlődés [67], illetve annak akár egy speciális területe.

Ezen alapelvék figyelembe vételével a korábban tűzvizsgálati szakterületre megalkotott tanulási folyamatot szeretnénk bemutatni, amely tekinthető egy vizsgálatot végző személy tanulási ciklusainak az egymásra épülésének, a tudásszerzés fokozatainak (17. táblázat)

<table>
<thead>
<tr>
<th>Alapismeretek elméleti elsajátítása</th>
<th>Ismeret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betanulás (tapasztalt mentor segítségével). Ismeretek gyakorlatban való alkalmazása.</td>
<td>Képzettség</td>
</tr>
<tr>
<td>Tapasztalatszerzés, illetve annak beépítése a saját módszerek közé. A munka ,,össztönszerűvé'' válik.</td>
<td>Képesség</td>
</tr>
<tr>
<td>Kellő gyakorlat megszerzése után gyorsabb, hatékonyabb munkavégzés.</td>
<td>Rutin</td>
</tr>
</tbody>
</table>

17.számú táblázat A tudásszerzés fokozatai (Készítette Rácz Sándor - Fentor László)
Láthatóan ez a folyamat inkább a gyakorlat megszerzéseinek a lépéseire koncentrál, de a végrehajtandó tevékenység is „valódi díszletek között” kerül végrehajtásra tulajdonképpen a kezdeti szakasztól a végső megállapításig [29]. Külön kiemelendő, hogy feltételezzük egy már megszerzett természet tudományi alapismereti tudás jelenlétét, amely kapcsolatos a témával, mint például kémiai, fizikai, biológiai, ismeretek.

5.4. A modellalkotás folyamata az oktatásban

A modellalkotási folyamat összefügg a tűzoltással. A Valóság tulajdonságai, és megnyilvánulásai közül a Modell néhány, számunkra fontos elemét veszi figyelembe, azokat amelyek a lényeget érintik. A modell használatával lehetséges bizonyos folyamatokat, eseményeket megérteni, feltéve, ha a Valóság és a Modell közös tulajdonságait tartjuk a főkuszban. A gyakorlatokat alatt egyfajta modelleken keresztül igyekszünk megteremteni azt a környezetet, amely a valódi káreseti beavatkozások körülményeihez hasonló feltételeket biztosít.[89]

A feltételezésem alapján a gyakorlat akkor fejleszti a mentális térképünket hatékonyan, ha egyrészről:

- „organikus”, modellértékű környezetben végezzük
- és a végrehajtás lehetséges verzióit egymáshoz viszonyítjuk, tehát mérjük

Így egyfajta versenyt teremtünk a feladatsorok között. Ez nemcsak objektív értéket mutathat, hanem fejleszti a tűzoltó kiválasztási döntési mechanizmusát. Amennyiben mérhető a különbség, akkor egészen biztosan a legjobban alkalmazható módszert fogja előnyben részesíteni valós körülmények között. A memóriánk (kognitív térképünk) deklaratív, és nem deklaratív elemei mind fejlődnek, egy jó modellértékű helyszínen. Véleményem szerint az epizodikus, és a procedurális emlékezetünk mellett a szemantikus memóriánk is fejlődik.

5.5. Az intervenciós kör szerepe a gyakorlati feladatmegoldásoknál

Az intervenciós kör egy olyan eszköz lehet a hivatásos katasztrófavédelmi szervezet tűzoltó egységeinek a kiképzésénél, amely a gyakorlati problémák megoldásához szükséges lépéseket azonosítja, és határozza meg (31. ábra). A módszertani szempontból új szemlélet azt jelentené, hogy minden egyes probléma megoldására több lehetséges verziót vizsgálunk meg, amelyek eredményességét külön-külön, majd együtt is megvizsgáljuk. A harmadik fejezet példáin keresztül, azok a káresemények, amelyek fő hatásai mérhetők, vagy
modellezhetők azonosíthatjuk azokat a folyamatokat, amelyek a legnagyobb veszélyforrásokat jelentenek. Ezeket az eseményrészleteket alapvető súlypontként tekintve, és az intervenciós kör szakaszait használva, kiválaszthatjuk, hogy milyen megoldási lehetőségeink vannak.[90]

Használhatjuk mindezt abból a célból, hogy dönteni tudjunk —a szükséges ismeretek birtokában — egyrészről az erőforrások pontos megállapításában, és egy új, hatékonyabb protokoll kiválasztásában, vagy megtervezésében.

5.5.1. Az intervenciós kör szakaszai

- Probléma megtalálása: tisztázni a probléma jellemzőit és/vagy fontolóra venni, mely hatása miatt probléma a probléma
- Diagnózis (probléma meghatározása): beazonosítani a hatást kiváltó tényezőt, és meghatározni annak paramétereit
- Kivitelezés: összehasonlítani a különböző terveket vagy intervenciókat, melyek megoldhatják a problémát (kísérlet)
- Monitoring (vizsgálat): a tervezés és a kivitelezés során feltárt különbségekre megoldási javaslatot tenni
- Értékelés: megállapítani, hogy a lehető leghatékonyabb, legbiztonságosabb megoldást alkalmaztuk-e a probléma megoldásához (31. ábra)

![Diagram](image)

33. ábra Az intervenciós kör szakaszai (készítette: Rácz Sándor)
5.5.2. A kísérlet célja

A kísérlet olyan kvantitatív eljárás, amely a függő és független változó közti ok-okozati összefüggés feltárását célozza. A katasztrófávédelem gyakorlatai — különös tekintettel a szituációs begyakorló, és az ellenőrző gyakorlatok — véleményem szerint kísérletnek tekinthetőek mert amellett, hogy készségeket fejlesztenek, objektív elemek mérésével vizsgáljuk alkalmazott eljárásaink működőképességét.

A független változó ebben az esetben a kialakított — környezeti hatásokat szimuláló — eseménymodell, míg a függő változó, véleményem szerint a gyakorlat megoldásához alkalmazott erőforrások. Az erőforrások alatt a képzettséget, az eset jellegének megfelelően differenciáltan alkalmazott speciális technikákat, és felhasznált eszközök, és természetesen a szükséges létszámot értjük.

Intervenciós kör elméleti és gyakorlati problémára

A különbség a két eljárás között az, hogy gyakorlati probléma esetén egzakt választ kapunk a működésre vonatkozóan, tudományos probléma esetén az elmélet megerősítést nyer, vagy gyengül, esetleg új összefüggések jelenhetnek meg. A gyakorlati problémát sok esetben elméleti probléma előzi meg, vagy éppen az alapja a gyakorlati problémának.(32-33.ábra)

![Intervenciós kör használata elméleti probléma megoldására](készítette: Rácz Sándor)
A felkészítésért felelős vezetők részére mind elméleti, mind gyakorlati vonatkozásban lehetőség lenne elvi megközelítésként felhasználni az intervenciós kör elemeit, különösen tekintettel egy új probléma megoldására, vagy gyakorlatok feltételezéseihez kapcsolódó megoldási javaslatok kidolgozásában.

35. ábra: Intervenciós kör használata gyakorlati problémára (készítette: Rácz Sándor)

5.6. A képzés során alkalmazott szemléletmód

A katasztrófavédelem komplex rendszerében számtalan probléma megoldására keresünk, és adunk választ működés közben.[91] Ezek egy része kvantitatív szemléletmóddal, más része kvalitatív szemléletmóddal oldhatók meg. A feltételezésem alapján a káreseti beavatkozásokra történő felkészülés nagyrészt kvantitatív szemléletmódot igényel, és ehhez a stratégiáknak is ilyen típusúaknak kell lenniük. Ahhoz, hogy egy empirikus szakmát jobbítsunk, a módszereinknek is olyanoknak kell lenniük, amelyek által gyakorlati tapasztalatokat nyerünk. Számításokra, és mért adatokra kell fókuszálnunk, amelyek mennyiségileg jellemzők a szituációk, és a jelenségekre. A szabályszerűségek keresése kiemelkedik ezek közül, mert fontos a megbízható, minden körülmények között alkalmazható módszer. A kvantitatív kutatás során tehát ‘egységekben’, ‘változókban’ és ‘értékekben’ mérhető jelenségeket vizsgálunk, ok-okozati, és korrelációs összefüggéseket
keresünk. A kvalitatív megközelítése a tűzoltói munkának olyan szubjektív megítéléseken keresztül értelmezhető, mint például az egyének tapasztalata, kognitív térképük fejlettsége, jó döntéshozó képességük. Ezek fejleszthetőségére korábbiakban kitértem, és míg a kísérletekkel, mért értékeken keresztül a kvantitatív megközelítés érvényesül, véleményem szerint származtathatók belőle a kvalitatív eredmények is. A lezajlott események után elvégzett elemzések egy esettanulmányon keresztül segít a folyamatok értelmezésében, amelyek egyben stratégiának is tekinthetők ily módon.

5.6.1. Problémák az eljárás kiválasztásában


A gyakorlatok rendszerét belső szabályozó előírás határozza meg amely egyik fő gondolata szerint „A gyakorlatokat úgy kell tervezni és végrehajtani, hogy azok során az állomány megfelelő ismeretet, játásságot, valamint kétséget szerezzen. A gyakorlatok tervezésénél, végrehajtásánál a tűzesetek és műszaki mentések, továbbá a korábbi gyakorlatok tapasztalatait is hasznosíthatjuk.”[121]

5.6.2. A készenléti jellegű szolgálatot ellátó tűzoltó állomány továbbképzése

Kiemelve az operatív szinten dolgozó tűzoltói állományt a képzés szempontjából, láthatjuk, hogy egyrészt általános szempontok szerint, másrészt szakmai szempontok figyelembe vételével kell a képzésüket, továbbképzésüket megszervezni, és végrehajtani. Az általános

[121] 60/2016. számú BM OKF főigazgatói intézkedés 2. számú melléklet
szempontok elvi meghatározása során az intézkedés kiadójági gondoskodik a jogi normák elsajátításáról, az alaki képzés folyamatosságáról, a sport, és a tűzoltó versenysport gyakorlásáról. A szakmai szempontok meghatározásával differenciáltan a mentő tűzvédelemmel kapcsolatba hozható tevékenységek oktatásáról, gyakoroltatásáról, korábbi tapasztalatok felhasználásáról rendelkezik. Szakmai szempontok szerint van meghatározva a gyakorlatok egymásra épülése is. A kiemelt létesítményekhez köthető helyismeretet fejlesztő gyakorlatokra épül a szituációs begyakorló gyakorlat, amely után ellenőrző gyakorlat következik. Az oktatás ciklusokra van bontva, amely éves szinten 15 alapciklust tartalmaz. Az általános képzési terv elkészítését a BM OKF Országos Tűzoltósági Főfelügyelőség Tűzoltósági Főosztálya végzi, amelyet kiegészíthet a Hivatásos tűzoltóparancsnokság a helyi adottságok figyelembe vételével. Összességében megvizsgálva négyet különböztettem meg, amikor az elméleti alapok gyakorlatban való használatossága, a gyakorlati tapasztalatok elméleti témakörökhöz való kapcsolódása, tiszta gyakorlati, vagy tiszta elméleti tudás ismétlése, és elsajátítása a cél.

A gyakorlatok rendszere kiemelkedik a képzés rendszeréből, hiszen itt kell számot adni a tűzoltóknak az elméleti tudásuk gyakorlati alkalmazhatóságáról, valamint a gyakorlati elemek készségszintű végrehajthatóságáról. A szituációs begyakorló gyakorlatokhoz, és az ellenőrző gyakorlatokhoz terveket kell készíteni, amelynek tartalmaznia kell az alkalmazandó eszközöket, létszámot, a feltételezést, taktikai helyszínrajzot kell készíteni. A tűzoltáshoz, vagy műszaki mentéshez szükséges erők, eszközök számítását viszont nem tartalmazza a gyakorlatterv. A feltételezés főbb eseményrészzeit meghatározza, de a súlypontjait nem jelöli, és nem határozza meg a végső eszközösgényt sem.

A gyakorlatok fajtái a tűzoltósági szakterületen a következő:

Felkészítő gyakorlatok:

- vezetési gyakorlat;
- szerelési gyakorlat;
- tűzoltótechnika kezelői gyakorlat;
- helyismereti foglalkozás;
- szituációs begyakorló gyakorlat;
- tűzoltási gyakorlat.

122 BM OKF Főigazgató
123 60/2016. számú BM OKF főigazgatói intézkedés 2. számú melléklet
Ellenőrző gyakorlatok:
- helyi szintű ellenőrző gyakorlat;
- területi szintű ellenőrző gyakorlat.¹²⁴

A felkészítő gyakorlatok célja:
A felkészítő gyakorlatok céljai közül kiemelendő az elméleti ismeretek gyakorlatba történő átültetésének fontossága, technikai eszközöink készségszintű alkalmazása, különböző módszerek kipróbálása, kiválasztása gyakoroltatása, az alap szerelési protokollok fejlesztése, a felmerülő hibából történő tapasztalatszerzés, és a lehetőség szerinti rendkívüli körülmények között (füst, hőterhelés, veszélyes anyag) történő feladatellátás szimulálása.

A szituációs begyakorló gyakorlat
Ennek a gyakorlatnak a célja, hogy a taktikai bevethetőséget szinten tartsuk, valamint hazai, és nemzetközi tapasztalatokat felhasználva a leghatékonyabb végrehajtási lehetőségeket gyakorolja az állomány. Fontos, hogy a végrehajtás során szerzett tapasztalatokat az állomány értékelje, és az ebből levonható tanulságokat hasznosítsa. A szituációs begyakorló gyakorlatot a tűzoltóparancsnok szervezi, a szolgálatparancsnok elkészíti a gyakorlattervet, ami alapján a helyszínt előkészítő személyes eszközök használatával. A gyakorlatot során a tűzoltásvezetői feladatokat ellátathatja a szolgálat-parancsnok, vagy az általa kijelölt személy.

Az ellenőrző gyakorlat
Az ellenőrző gyakorlat során a szerelési, helyismereti, begyakorló gyakorlaton tanult, és begyakorolt ismereteket lehet készség szintre fejleszteni. A tűzoltás vezetése, vagy a szervezhető beosztások feladatainak az elvégzése, és az ellenőrzése kontrollált körülmények között történhet meg.

Az ellenőrző gyakorlatok fajtái:
- helyi szintű ellenőrző gyakorlat;
- területi szintű ellenőrző gyakorlat.

A helyi szintű gyakorlatok szervezését, és előkészítését a Hivatásos tűzoltóság parancsnoka, és helyettese végzi, míg a területi (megyei, fővárosi) ellenőrző gyakorlat szervezője a területi szerv tűzoltósági főfelügyelője. A gyakorlatokat évente két alkalommal kell végrehajtani szolgálati csonromptént, amelyből az egyik nappali, míg a másikat éjszakai látási

¹²⁴ 60/2016. számú BM OKF főigazgatói intézkedés 2. számú melléklet
köörülmények között kell lefolytatni. A területi ellenőrző gyakorlat természetesen nagyobb volumenű (minimum 3,5 raj), és a tűzoltás vezetését is területi szervezeti egység, a KMSZ végzi. Mindkét gyakorlatfajta esetében kötelező az egyéni védőeszközök, és szükség esetén légzőkészülék használata. A veszélyes anyaggal kapcsolatos feltételezés esetében a KML állománya is kötelezően tervezendő egység.

A tűzoltási gyakorlat
Ritkán alkalmazott, de rendkívül hasznos gyakorlat a káreseteknek megfelelő körülmények (erős füst, nagy hőterhelés, stb.) alkalmazása, amely által a valósághoz teljesen hasonló körülményeket teremtünk az állomány részére. Itt lehetőségünk van és gyakorolni a legcélszerűbb oltási eljárást, eszköz, oltóanyag alkalmazását.

A gyakorlatok értékelése
A felkészítő gyakorlatok közül a vezetési, a szerelési, és a tűzoltótechnikai kezelési gyakorlatot készségfejesztő gyakorlatnak tartom, míg a többi gyakorlatot inkább a mentális térképet fejlesztő gyakorlattípusnak. A begyakorló, és az ellenőrző gyakorlat a vezetői mentális térkép fejlődéséhez is hozzájárul. A szituációkon keresztül végrehajtott gyakorlatok fejlesztik a problémamegoldó képességet, amennyiben valósághoz közeli modellen keresztül tudtuk azt végezni. Ennek kialakításához, megállapításom szerint az intervenciós kör elemeit kell használnunk. Fontosnak tartom, hogy a gyakorlatok meghatározó részleteit előzetesen megvizsgálva, azokhoz már a gyakorlat tervezési időszakában megoldási lehetőségeket párosítani. Szükséges beazonosítani a súlyponti helyzeteket, amelyek a feltételezéseket követhetően jelentkeznak. Az értékelés szempontjából különösen fontos előzetes a mérés/számnts folyamata, mert csak ezeket az értékeket lehet számon kérni az ellenőrzőtől. Az ellenőrző gyakorlatok értékelése egységes szempontrendszer alapján történik, amelyet vonatkozó belső szabályzó tartalmaz (36. ábra). [94]

125 60/2016. számú BM OKF főigazgatói intézkedés Függelék
A felismert súlypontok (amelyek területéhez, időhöz, vagy feladathoz köthetők) meghatározzák a káresemény minősítését, az irányítási mód meghatározását is, ezáltal a feladathoz szükséges erőforrásokat (34. ábra).

### 5.7. Új készség, és mentális térképfejlesztő gyakorlatok

A katasztrófavédelem összetett feladatrendszeréből [95][96] kiemelni egy olyan felkészítési eljárási elemet, amely a mentő tűzvédelemhez, pontosabban annak egyik alkalmazott eljárásához kapcsolódik, csak úgy lehetséges, hogy kapcsolni tudjuk hozzá azokat az elvi megközelítéseket, amelyeket a fejezetben összefoglaltam. Úgy gondolom, hogy a mentő tűzvédelem vonatkozásában működő felkészítési eljárásaink elvi megközelítésben némileg eltérnek a hatósági tevékenységre történő felkészítés rendszerétől, [97] viszont a modellértékű, szemléletes oktatási szituációk azokban a felkészítési folyamatokban is hasznos módszerrel válhatnak. A gyakorlatok szervezésekor tehát törekedni kell a modellérték megjelenésére, amely lehetővé teszi az eljárásaink valósághoz hasonló gyakorlati tereinek a kialakítását. A korábbiakban meghatározottak szerint a káresemény szükséges feladatrendszerei feladathoz, területhez, valamint időhöz kötődően. A beavatkozás előkészítésének a fázisa a tűzoltást megelőző szakasz, amikor a cél az oltóvíz eljuttatása a tűzhöz. Ezt egy valódi súlyponti helyzet, amelynél mindhárom súlyponti paramétert megtaláljuk. A beavatkozás előkészítése olyan feladat, amelyet jellemzően a térben való elhelyezkedése (a tűzeset helyszíne, és a gépjárműfeszkendő, vagy falütvizcsap között), időben szükösség, és szerelési eljárási metodika.
Az általános szerelési foglalkozásoktól eltérően, különösen lakóépületeknél — azok különbözősége miatt — indokolt egy olyan eljárás bevezetése, amely lehetőséget biztosít a leghatékonyabb eljárás kiválasztására.

Az alap szerelési eljáráson túl, de még a végleges komplex feladatvégzésen belül lehetséges végrehajtási alternatívákat kidolgozni, mégpedig azok egymáshoz viszonyított eredményességével. [77] Ez a típusú, összehasonlító gyakorlat végrehajtás még nem honosodott meg Magyarországon, de több alkalommal foglalkoztatta már a tűzoltókat. [98] [99] A végrehajtható eljárások egymáshoz viszonyított sikerességén, azok mérhető (időbeni) paraméterein, és az azokba befektetett energia alapján történő szelekciót alapuló „mintagyűjtés” véleményen alapján hatékonyabbá tennék a tűzoltói beavatkozásokat.

Egy a kreatív szemléletű, folyamatosan fejleszthető, gyakorlati képzési forma, amely által a variációs lehetőségeinket bővíteni tudjuk, összhangban lehetne a felkészítő gyakorlatok rendszerével. A gyakorlatok során kialakítható automatizmus, különösen a mérés alatti végrehajtás esetében, már közelíthet ahhoz a „munkatemridorhóz”, amely káreseteknél szükséges. Ez a megerősítési folyamat segítségére lehet, amikor a tűzoltóknak, a káresetek felszámolásakor, megemelkedik a stressz szintje, és emiatt akaratlanul is beszűkül a látóköre. További pozitív hatása van a versenyszellemnek, amely jelen van a tűzoltói mentalitásban, ezért ez is motiváló erő a mozdulatok tökéletesítése érdekében rationalizált mozdulatok, mozdulatsorok kidolgozásánál.

Megvizsgálva a lakóépületekben, tűzoltók által kialakítandó oltóvízhálózatokat (szerelés), valamint összehasonlíthatjuk ezeket megállapíthatjuk, hogy ez később egy módszertani segédlet alapja lehet, amely összhangban az alap szerelési eljárásokkal, de azt továbbgondolva, eredményesebbé teheti a tűzoltó munkát. [82] A szerelési szabályzat korábban meghatározott alapmozdulatokra építve, valamint azokat folyamatosan fejleszttve, ad kereteket a szakszerű munkavégzéshez, azonban például társasházakban, ezek különbözőképpen hajthatók végre. A témát érintve a néhány szerelési lehetőség vizsgálata történt meg, valamint lett hozzá javaslat megfogalmazva.

A szerelési szabályzat — ellenőrzött körülmények között végrehajtva — meghatározott szintidőket állapít meg típusos feladatokhoz. Ezek az időintervallumok káresetnél nem biztos, hogy tarthatók, de lehetséges a rövidebb végrehajtás is a körülmények függvényében. Különösen nem életszerű épített környezetben, például különböző lakóházak esetében

126 BM OKF 3/2015. számú Főigazgatói utasítása a tűzoltóságok Szerelési Szabályzatáról
felsőbb emeletekhez szerelt tűzoltó alapvezetékekek\textsuperscript{127}, és a tűz oltására alkalmazandó sugár\textsuperscript{128} megszereléséhez szükséges időt meghatározní. Ettől függetlenül a kísérletek, hogy a legjobb végrehajtási időt biztosító eljárást válasszuk hasznosak, sőt a vizsgálatok azt mutatják, hogy javíthatók ezek az idők különböző módszerek élő helyszínen való gyakoroltatásával.

Az oltással kapcsolatos előkészítő folyamatok többszörös megismétlődhetnek a tűzeset alakulásával, valamint egyéb bontási, vágási, behatolási feladatokat is kell végezni. \textsuperscript{[2, 17§ i.] Ezzel együtt, és éppen ezért ezek a folyamatok minden esetben nagyobb erőt igényelnek, mint maga az oltási létszámmegyény a tűzoltás korai szakaszában, és a megállapításom alapján önálló vezetést is. \textsuperscript{[4][5]} Emellett, ebben a szakaszban, a tűzoltásvezetőnek pontosan le kell határolnia feladatának a végrehajtók számára.

A szerelési szabályzat a végrehajtás főbb módozatait, és a módszereket előírja, azonban a módszerek helyszínenként nem egyformán célra van.

A szerelési szabályzat külön meghatározza, hogy milyen módozatakat lehet alkalmazni a végrehajtáshoz:

1. Osztóval szerelt alapvezeték megkötése felhúzáshoz a sugárcsőkötél zárkapcsos végével
2. Osztóval szerelt alapvezeték megkötése felhúzáshoz a sugárcsőkötél kötél orsó felhasználásával.
3. Tömlővezeték megkötése felhúzáshoz a sugárcsőkötél zárkapcsos végével
4. Tömlővezeték megkötése felhúzáshoz a sugárcsőkötél kötél orsó felhasználásával \textsuperscript{[82]}

Az első probléma az alapvezeték felhúzásánál jelentkezik, hiszen a lakóházak nem mindegyike rendelkezik megfelelő, tűzoltó gépjármű által megközelíthető oldala felőli lépcsőházból elérhető megfelelő ablakkal, vagy egyszerűen egy előtét, a bejáratnál nehezíti meg ezt a folyamatot. Ezután rögtön jelentkezik a második probléma, ami az osztó kikötésével kapcsolatos.

\textsuperscript{127} Tűzoltó tömlők egymáshoz kapcsolásával kialakított vízhatlózat, amely egyik végén a tűzoltó gépjármű által rendelkezésére álló nyomás alatti vízmennyiség áll, míg a másik oldalán egy víz elosztására alkalmazott úgynevezett osztó (jellemzően 3 ágú) áll.

\textsuperscript{128} Tűzoltó tömlők egymáshoz kapcsolásával kialakított vízhatlózat, amely egyik végén az osztó áll, míg a másik végén a sugárcső (a víz kijuttatását szabályozó tűzoltó szakfelszerelés) áll.
A magasban végzett munka megköveteli, hogy visszaesés ellen is biztosítsuk a kiépített oltóvezetékeinket, amely több eszköz igénybevételével is történhet:

- Alapvezeték osztóval kikötése sugárcsőkötől zárkapcsos végével
- Tömlővezeték kikötése tömlőtartó kötéssel
- Alapvezeték osztóval kikötése tömlőtartó kötéssel

Ezek a problémák jelentkezhetnek is a lakóházak tüzeinél, és értékes időt használunk arra, hogy kiválasszuk az optimálisnak vélt megoldást. [25] A gyakorlatok rendszere a tűzoltóságok tekintetében lehetőséget ad arra, hogy szerelési foglalkozások keretében fejlesztek a készségszintjüket a végrehajtójok. Természetesen ez előírás is a szakszerű végrehajtás érdekében, de az „élő” helyszínén (különböző lakóépületek a városokban pl.: Larsen-Nielsen házak, sátézházak, pontházak, függőfolyosós bérházak) történő szerelés nem elterjedt. A parancsnok (Hivatásos tűzoltóság parancsnoka, vagy a szolgálatban lévő állomány szolgálatparancsnoka) szervezheti úgy ezeket a szerelési foglalkozásokat, hogy a hivatásos tűzoltóparancsokság működési területén, önkormányzati tűzoltóság esetében az elsődleges műveleti körzetén belül beazonosítják a különböző típusú és adottságú építményeket, és kidolgozzák az oltáshoz legjobban alkalmazható módszereket. [86]

5.8. Alkalmazott szerelési feladatok típusos helyszíneken

Két konkrét példán keresztül világítom meg ezt a lehetőséget, amely Budapesten, és Dunaújvárosban került végrehajtásra. Nem egyedi kezdeményezések ezek, azonban a mért eredmények nem kapnak széleskörű publicitást. A tűzoltók általában a tapasztaltabbaktól szerzik be azt a tudást, amely a legjobb „fogás” alkalmazását fogja számukra jelenteni. Az összehasonlító elemzés ezért ritka, mert a legtöbb alkalmazott eljárás (akár mozdulatszintű fogás) már meghonosodott, és lényegében célravezető is, hiszen egy már korábbi sikeres végrehajtáson alapszik. Kijelenthetjük azonban, hogy a tűzoltók a másodpercekkel küzdenek a káresetek felszámolásánál, és a továbbiakban látható, hogy a gyakorlatot vezető parancsnok szemlélete az, hogy megállapítást tesz az esetleges nyerhető időre, azaz „maradt-e idő” a szerelésben.
5.8.1. Összehasonlító, alkalmazott, szerelési gyakorlat I.

A gyakorlat célja:

1. A középmagas épületekben történő beavatkozás gyakorlása különös tekintettel az alapvezeték és a sugárszerelés vonatkozásában.

2. A különböző szinteken az eltérő alapvezeték szerelési módok kipróbálása, összevetésük a hatékonyság és gyorsaság tekintetében.

3. A különböző szintek eléréséhez szükséges tömlők megállapítása.

4. A szükséges taktikai megoldások kialakítása.

A feladat egyik részét, nevezetesen az alapvezeték felhúzását tárgyalja a szerelési szabályzat, viszont a lépcsőkaron történő tömlőfektetést nem. Ezt a megoldást nem támogatja más belső utasítás sem, mégis ez is egy lehetséges megoldási forma, amelyet vizsgálni érdemes, és nem ritkán alkalmazásra kerül a tűzoltói beavatkozásoknál. A szabályzat általi alapvezeték felhúzási mód esetében részletesen meg vannak határozva a feladatokat, így ennek a végrehajtása utasítás szerint történt. A gyakorlat végrehajtásának időpontja 2013-ban történt Budapesten, és más eljárási szabály volt érvényben, viszont lényeget érintő részletekben nem tűr el a most (2018) hatályban lévőtől. A gyakorlaton a negyedik, hatodik, és nyolcadik emeleten lehetett a feladatokat végrehajtani. A szerelési feladatok mindhárom szinten ugyanaz voltak:

- Sugár szerelése, alapvezeték felhúzással. (szerelési szabályzat)
- Sugár szerelése lépcsőkaron fektetett alapvezetékekkel.

Alapvető célkitűzés az volt, hogy a két módszer közötti végrehajtási időkülönbséget mérhetővé tegyék, és ennek alapján, a későbbi káreseti beavatkozás alkalmával megfelelő döntéseket tudjanak hozni a parancsnokok.

A 6/2016 BM OKF Utasítás alapján megszerelhető az alapvezeték az orsótéren keresztül is, de ebben a lépcsőházban orsótér nem állt rendelkezésre ezért ez a feladat nem került végrehajtásra.

Mindent szerelés a gépjármű fescsendőből indult, a szükséges tömlők a fescsendő mellett elhelyezve (a feladat egységes mérhetősége érdekében). A szerelést végrehajtják a

---

129 6/2016. BM OKF Utasítás  
130 102/2012. BM OKF Intézkedés a tűzoltóságok Szerelési Szabályzatáról  
131 3/2015. BM OKF Intézkedés a tűzoltóságok Szerelési Szabályzatáról  
132 Lépcsőkarak közötti, lakóházakban eltérő nagyságú rés, amely alkalmas lehet tűzoltó tömlő elvezetésére (a szerző)
légzőkészüléket készenléte helyezve (hordhelyzetben, nem használva) viselték. A szerelést egy teljes raj (5 fő) hajtotta végre, de táplálásszerelésre\textsuperscript{133} nem került sor. Az első „B” tömlő végén minden esetben osztó volt elhelyezve, amely praktikus a beavatkozók szempontjából, és két célt szolgálhat. Ennek egyik funkciója, hogy könnyedén leengedhető a beavatkozás végén a vízmennyiség a gravitáció segítségével, illetve műszaki probléma esetén kiváltható vele a használt gépjárműfeeszkendő. Az idő mérése a fecskendőből való kiszálláskor indult és az adott szinten a sugár megszerelését követően ért véget. [98]

5.8.2. Az eredmények értékelése

Számos tapasztalat született a szerelési gyakorlat alatt, amely a későbbiekből segítheti az ilyen feladatvégrehajtást. Az egyértelművé vált, hogy a hatodik emelet felett esetleges tűzhajó történő alapvezeték szerelés gyorsabb, mint a lépcsőkaron szerelés. A hatodik emeletig viszont a lépcsőkaron történő alapvezeték szerelés gyorsabb, vagy közel azonos idejű a felhúzással. Az alapvezeték szerelésével foglalkozó 3-as, és 4-es beosztású, csak a hatodik emeletig tud plusz tömlő nélkül alapvezetéket szerelni a lépcsőházban. Mindeközben az is beigazolódott, hogy a lépcsőkaron szerelt alapvezeték akadályozza a mentést, és az épület kiürítését. További energia befektetését igényli, hogy a lépcsőkaron szerelt alapvezeték gondos fektetést igényel, mert a beszorult tömlők miatt az oltóvíz nem jut el az osztóig (17. számú kép).

\[98\]

\[133\] a tűzoltó gépjárműfeeszkendő folyamatos vízutánpótlására megszerelt vízhálózat, amelyet épített, városi környezetben jellemzően utcáin, föld alatti, vagy föld feletti tűzcsapokról szerel a végrehajtó állomány (a szerző)
A legbiztosabb módszer a lépcsőkaron fektetésnél, továbbra is a fentről lefelé történő gurítás. Ha a lépcsőkaron a tömlőket húzzuk, akkor plusz időt vesz igénybe a megfelelő kifektetésük. További praktikus tapasztalt, hogy egy tömlő biztonságosan másfél emeletet ér el a lépcső aljától. Tehát a gurítási pontok a „másfeledik”, a harmadik, a „négy és feledik”, és a hatodik emeletek.

Az orsótér használatával, kézzel felhúzás esetén egy tömlő a lépcsőkar aljától a hatodik emeletig ér el. Egyértelműen ez a megoldás a legcélravezetőbb, a külső falsíkon történő felhúzás mellett, de a helyszín adottságai nem minden esetben engedik meg a legbiztonságosabb, és leggyorsabb megoldás alkalmazását.

<table>
<thead>
<tr>
<th>Emelet száma</th>
<th>Alapvezeték hossza</th>
<th>Sugár szerelése, alapvezeték felhúzással.</th>
<th>Sugár szerelése, lépcsőkaron fektetett alapvezetékkel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>3 db B tömlő</td>
<td>4 perc 58 másodperc</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>6 db B tömlő</td>
<td></td>
<td>8 perc 34 másodperc</td>
</tr>
<tr>
<td>6</td>
<td>2 db B tömlő</td>
<td>4 perc 02 másodperc</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5 db B tömlő</td>
<td></td>
<td>3 perc 23 másodperc</td>
</tr>
<tr>
<td>4</td>
<td>2db B tömlő</td>
<td>3perc 43 másodperc</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 db B tömlő</td>
<td></td>
<td>2 perc 12 másodperc</td>
</tr>
</tbody>
</table>

18.számú táblázat Szerelési idők a gyakorlaton (Készítette Rácz Sándor, Vincze Zsolt mérései alapján)

A gyakorlatokon mért időeredmények alapján könnyebb lehet a hatékony módozat kiválasztása (18. táblázat). A leghatékonyabb módozat kiválasztása csak mérések általi, összehasonlító, alkalmazott, élő helyszínen végrehajtott szerelési, vagy szituációs gyakorlatok alkalmával fejleszthetők! [83]

5.8.3. ÖSSZEHASONLÍTÓ (SZITUÁCIÓS) SZERELÉSI GYAKORLAT II.

A gyakorlat, egy olyan társasház területén került lefolytatásra (18.kép), ahol a társasház, a tűzvédelmi hatóság engedélyével átalakította a meglévő száraz felszálló tűzvízvezeték rendszerét, úgy, hogy vízkivételi helyek csak a hatodik és fölötte minden második emeleten kerültek kialakításra. Egy zárt szekrényben elhelyezett csatlakozóconkokkal került biztosításra a vízkivitel ezekben a szinteken. A gyakorlat megtervezésében, megszervezésében, segítséget nyújtott a Fejér Megyei Katasztrófavédelmi Igazgatóság Dunaujvárosi Katasztrófavédelmi Kirendeltség Hatósági osztályvezetője, aki a szituációs gyakorlat során részt vett az eredmények rögzítésében és kiértékelésében is.[99]

A gyakorlatot a Fejér Megyei Katasztrófavédelmi Igazgatóság Dunaujvárosi Katasztrófavédelmi Kirendeltség Dunaujváros Hivatásos Tűzoltóparancsnokság állománya
hajtotta végre. A gyakorlat egy szituációs feltételezéssel indult, amely szerint 7. emeleti szemétledobó helyiségben keletkezett tűz, amely veszélyezteti a szinten élőket. Az állománynak a feladatot teljes védőfelszerelésben légzőkészülékként (hordhelyzetben) kellett végrehajtania.

A gyakorlat során a következő feladatok kerültek meghatározásra:

- táplálás és alapvezeték szerelése felhúzással (lépcsőházon belül, a lépcsőkarok közötti térben), osztó az 6. szinten, majd két darab „C” sugár szerelése,
- földszintről táplált, beépített szárazfelszálló vezetékrendszer használatával két darab „C” sugár működtetése. A szárazfelszálló vezeték betáplálási pontja a földszinten volt.

Mindkét gyakorlati feladat háromszor került mérésre, és minden esetben 1 teljes raj hajtotta végre. Egy raj ugyanazon beosztások mellett két sugar hajtotta végre a feladatokat.

A feladat végrehajtása a következőképpen valósult meg:

1. alapvezeték szerelés: 3 fő (5-ös, 4-es, 3-as beosztás), 1 db osztó a 6. emeleten
2. táplálás szerelés: 1 fő (5-ös beosztás), 1 db osztó a földszinten
A földszintről táplált, beépített szárazfelszállóról megszerelt vezetékrendszer kialakítása következőképpen valósult meg:

1. szárazfelszálló vezeték betáplálási pontjára csatlakozás 1 fő (5-ös beosztás) – osztó elhelyezése a betáplálási pont előtt
2. táplálás szerelés: 1 fő (5-ös beosztás),
3. alapvezeték szerelés: nem volt szükség
4. sugár szerelés: 2 fő (1-es, 2-es) 6. emeletre, 2. sugárszerelés a 8. emeletre (3-as, 4-es)

5.8.4. Az eredmények értékelése

A mért eredmények egyértelműen a száraz felszálló vízhálózat használatának hatékonyságát erősítették, amely valószínűsíthető is volt a kevesebb munkaelem miatt (19. táblázat). Az előnye a másik módszerhez képest viszont az, hogy 3 fő is elegendő volt az első sugár működtetéséhez a korábbi 5 fővel szemben. A hatályos belső szabályozó rendelkezik ennek a módszernek az alkalmazási lehetőségének a vizsgálatáról a beavatkozás felderítési szakaszában, azonban sok társasház — különösen a régebbi építésű — nem fordítanak kellő figyelmet ezek működőképesen tartására. Sok esetben megrongált, hiánysós állapotban, szabálytalan módon, elzárva találhatóak ezek. Ezt a körülményt ismerve, a tűzoltók, nem szívesen szerelnek ezen beépített eszközök segítségével oltóvíz hálózatot, hanem inkább a saját kiépítésben bíznak.

| Idő               | Táplálás és alapvezeték szerelése felhúzással lépcsőházon belül, a lépcsőkarok közötti térben, osztó az 6. szinten, majd két darab „C” sugár szerelése | Földszintről táplált, beépített szárazfelszálló vezetékrendszer használatával két darab „C” sugár működtetése. A szárazfelszálló vezeték betáplálási pontja a földszinten volt |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legjobb Idő második sugár | 6 perc 51 másodperc                                                                                                                                                                                                                                                                  | 1 perc 48 másodperc                                                                                                                                                                                                 |
| Atlag Idő első sugár       | 5 perc 01 másodperc                                                                                                                                                                                                                                                                  | 2 perc 46 másodperc                                                                                                                                                                                                 |

19.számú táblázat Szerelési idők a gyakorlaton
(Készítette Rácz Sándor; Somogyi Gábor és Szili István mérése alapján)

Az első sugár rendelkezésre állása, kulcsfontosságú a beavatkozás sikereségének szempontjából, mert a zárt térfüzfejfődése esetében akár 4-6 perc alatt kialakulhat a helyiség teljes égése. A nyerhető több mint 3 perc, és az így optimalizálható létszámigény az életmentésbe bevonható személyek tekintetében is hatékonyabb vérehajtást biztosít. A második sugár szerelése biztonsági szempontból kerül elrendelésre a hatályos belső
szabályzó előírása miatt [3], a felső szintekre történő tűzterjedés megakadályozása miatt, azonban amennyiben nem szükséges az üzemeltetése, a felszabaduló létszám azonnal átcsoportosítható életmentésre.

5.8.5. Radiológiai műszaki mentési gyakorlat

A Fővárosi Katasztrófavédelmi Igazgatóság szervezésében a IX. kerületi Hivatásos Tűzoltóparancsnokságon 2018. október 29-én megrendezésre került gyakorlat témája a KML és a tűzoltásvezetők (kárhelyparancsnokok) közötti együttműködés volt sugárveszélyes területen. A gyakorlaton részt vett az Igazgatóság összes parancsnoksága, és őrse, ütemterv szerint válta egymást a gyakorlaton. (19. számú kép)

19.számú kép A gyakorlatra érkező tűzoltó-gépjárműfecskendők (Készítette: Rácz Sándor)

A feltételezést tekintve személyi sérüléssel járó közlekedési baleset történt ahol CS-137 izotópot szállító gépjármű is érintett volt. A 2 db Yellow-III. besorolású küldeménydarabos szállítmányból az egyik doboz megsérült, és a 240 TBq aktivitású 0,6 Ti-es izotópot szállító ólomkonténer is károsodott, amelyeknél sértetlen állapotban a 0,6-os Transzport Index alapján 1 méter távolságnál maximum 6 μSv/h dózisteljesítményt lehetne mérni.
A sérüléstől levált egy 6 cm-es darab az izotópot szállító konténerből, amely miatt az árnyékolás nem volt megfelelő. A meggyengült árnyékolás miatt 3000 µSv/h dózisteljesítményt „mért” a KML a balesetet szenvedett gépjármű környezetében. A feladat értelmében a KML javaslatára már a gyakorlat kezdetén meg kellett határozni a veszélyes zóna határát a 4/2017. BM OKF intézkedés értelmében. (20.számú kép) Szükséges volt intézkedniük a KML javaslatára az OSKSZ, vagy egyéb szakember értesítésére (pl.: ADR tanácsadó) riasztására a főügyelet által, valamint sugárkapu üzemeltetésére a beléptetési pontnál a belső, és a külső lezárt terület közé, ezen kívül a mentesítő állomások létrehozására is. (21. számú kép)
A kárhelyparancsnok feladata volt, hogy utasítsa a KML-t a védőeszközeik, a mérőműszerek, és a személyi doziméterek előkészítésére, és használatak ellenőrzésére. A belső lezárt terület határát 100 µSv/h dózis teljesítmény határ alapján mintegy 8 méterben határoztak meg, míg a külső lezárt területét 20 µSv/h dózis teljesítményénél 18 méternél volt. A hatályos szabályzók szerint az életmentés alkalmával 3000 µSv/h dózis teljesítménynél — a 250 µSv dózis korlát betartásával — 5 perc kárfelszámolási tevékenységet engedélyezhető személyenként.

A 4/2017. BM OKF Intézkedés megtiltja az 1000 µSv/h dózis teljesítményű területte történő belépést, viszont a dózis korlátok ennél az értéknél is betarthatók az idővédelem alkalmazásával. A mentésvezetők ezért gondoskodtak az idő méréséről, valamint ezzel összefüggésben a létszám váltsáról, a belső veszélyes zónában eltöltött idő függvényében. A gyakorlat alatt egy váltást meg kellett szervezni a sugárvédelmi elvek érvényesülése miatt (idővédelem), hiszen a távolsági védelmet, és az árnyékot csak a külső lezárt területen kívül lehetett megvalósítani. Ebben az esetben indokolt létrehozni a biztonsági tiszta beosztást, aki figyelemmel kíséri a védekezés központi teendőinek megvalósulását.[2, 5§ (1) j.] A kommunikáció folyamatos volt, a kárhelyszín parancsnoka, és a gyakorlat vezetője között, a hozott intézkedéseit jelentnie kellett.

A gyakorlat jó alkalom volt a tűzoltásban gyakorlott tűzoltásvezetők részére, hogy egy ilyen speciális esetben megfelelő döntéseket tudjanak hozni a KML segítségével, és az eseményfelszámolás fő részeit beugrókorholhassák. Az ilyen események előfordulása ritka, azonban megfelelő szituációs gyakorlatokkal, amelyek mért értékre épülnek készségszintűvé válhat az eljárási rend megfelelő alkalmazása. A későbbiekben indokoltan látható, hogy a gépjárműfecskenkő rendszeresítésre kerüljenek operatív személyi doziméterek, amelyekkel a KML akadályozása esetében is biztonsággal meg tudják kezdeni a beavatkozást az elsőként kiérkező tűzoltók. Ezeknek a dozimétereknek a használata képességeit elsajátítható, és ennek segítségével a tűzoltásvezető már a beavatkozás kezdeti szakaszában meghozhatja a feladatokat végzők biztonságával kapcsolatos intézkedéseit, mert a felderítéssel kapcsolatos kötelezettségének eleget tudott tenni.
5.9. Részkövetkeztetések

A káresetek során szerzett tapasztalatok, legyenek akár negatív, akár pozitívak a legfontosabbak a tűzoltó életében, hiszen találkozik egy megoldási mintával, amelyet már egyszer ki tudott próbálni, és levonhatta a működésének, előnyének, hátrányának a tanulságait. A gondosan megtervezett, és végrehajtott gyakorlat, amely megalapozott tudásra épülve gyakorlatiasan kínál a tudásunkba beépíthető, és használható mintát, lehetőséget ad tudásunk bővítésére, a káresetek alatt jelentkező valódi veszélyhelyzetekre adott válaszlépések kipróbálására, hatásainak vizsgálatára.

A tűzoltó szakma velejárója, hogy folyamatosan ismereteket gyűjti, rendszerez, válaszokat ad a felmerülő problémákra. Ez egy empirikus megközelítés, hiszen alap természettudományi tudásunkat bővítjük, és alkalmazott speciális eljárásaink hatékonyságát rögzítjük az elménkben, hogy később előhívjuk egy speciális esemény megoldásakor.

A mentális térképünk fejlődése tehát az érzékszerveink által befogadott, és értelmezett inputoktól, de még inkább azok a környezettel alkotott kölcsönhatásaitól fejlődik. Az érzékszerveink által befogadott információk, és a kialakult szituációk hatásai határozzák meg az elraktározott emlékeink, tapasztalásaink fontosságát. Ezek, a később automatizmussá alakuló felismerési folyamatok adhatnak biztonságot a káreseteink. A mentális térkép fejlődése tehát az érzékszerveink által befogadott információk, és a kialakult szituációk hatásai határozzák meg az elraktározott emlékeink, tapasztalásaink fontosságát. Ezek, a később automatizmussá alakuló felismerési folyamatok adhatnak biztonságot a káreseteknek.

A tűzoltó, a munkavégzése során igyekszik lényegre törően, hatékonyan dolgozni, mert az adott helyzetben alkalmazható, a célértéket kielégítő egyszerű megoldási verziót részesíti előnyben. A hivatása gyakorlása közben egy korábbi, általa megélő, sikeresen végrehajtott megoldások közül választ egyet. A tűzoltói mércé, tehát az egzakt mérésen túli előzetes szubjektív hatékonyságvizsgálat is döntő az eseménykezeléshez alkalmazott eljárások kiválasztása tekintetében. Ez elkerülhetetlen folyamat, és nem zárja ki a szakszerű munkavégzést, tehát elengedhetetlen a mentális térkép fejlettsége. A tűzoltót jellemző heurisztikák segítik űt a problémák megoldásában. A tűzoltói találékonyság, a megoldási verziók egymáshoz való hasonlításából fakad, amely hatékonyságában a procedurális, az epizodikus, és a szemantikus emlékezetek jelentős szerepe van. A tanulni, gyakorolni, mérci, elemezní, ismételni elvek mentén a tűzoltói gyakorlatok rendszere fejleszthető, amely igényli az intervenciós kör szerinti megközelítést. A gyakorlatok esetében, azt az elemét fejlesszük az eljárásainknak, amelyet tudatosan kiválasztottunk, és a hatékonyság szempontjából fontosnak ítéltük meg. A modellértékű környezetben végrehajtott gyakorlatok, vagy elméleti tréningek után könnyebben asszociálnunk a valós eseményeknél, míg az ilyen jegyeket alig, vagy nem hordozó helyszínek, szituációk közben kevés érdemi

164
információ rögzül a hosszútávú memóriában. A szakmai fejlődést biztosító elveket, és a tananyag körének koncentrikus bővítésének megfelelően kell meghatározni, és a képzés során alkalmazni.

A felkészítő gyakorlatok közül a vezetési, a szerelési, és a tüzoltótechnikai kezelési gyakorlatot készségfejlesztő gyakorlatnak tartom, míg a többi gyakorlatot inkább a mentális térképet fejlesztő gyakorlattípusnak. A begyakorló, és az ellenőrző gyakorlat a vezetői mentális térkép fejlődéséhez is hozzájárul. A szituációkon keresztül végrehajtott gyakorlatok fejlesztenék a problémamegoldó képességeit, amennyiben valósághoz közeli modellen keresztül tudtuk azt végezni. Ennek kialakításához, megállapításom szerint az intervenciósnál kér elemeit kell használnunk. Fontosnak tartom, hogy a gyakorlatok meghatározó részleteit előzetesen megvizsgálva, azokhoz már a gyakorlat tervezési időszakában megoldási lehetőségeket párosítani. Új elemként az összehasonlító, vagy kizárólag mérésen alapuló gyakorlatokat emelném ki mint könnyen mérhető gyakorlat fajtát, amikor lényegében egy kvalitatív tudományos eljárást végzünk folytatunk le. Az eljárásunkat tekinthetjük kísérletnek, amely része a gyakorlati problémát megoldó intervenciósnak, és a mentális térkép fejlődésének is jó része.

A mérések általi megközelítés, nemcsak a mérnöki szemlélet velejárója, hanem az általános megismerésünk, kutatásunk része is. A tűzoltási és műszaki mentési eljárások szinte kivétel nélkül igényelnek valamilyen mérést, amelytől függ az eredményesség. A fejezet által feldolgozott összehasonlító jellegű mérési gyakorlat, és a radiológiai műszaki mentési gyakorlat egyresztről nyerhető időt vizsgál, másrészről időkorlátot határoz meg. A készség szintű mérési tudatosságunk fejlesztését sok olyan gyakorlaton keresztül fejleszthetjük, amikor egy beazonosított változó vizsgálatán keresztül jutunk el egy eredményesebb eljáráshoz kidolgozásáig. Az általam megállapítottak alapján fontos lenne olyan alkalmazott eljárási módszertani kézikönyv, vagy segédlet elkészítése az alkalmazható módszerek alól, valamint azok használhatóságról, amely típusos helyszínekhez megvalósítható módozatokat tartalmaz, összehasonlitva azokat egymással időfüggés, és befeketett energia alapján, kiemelve azok előnyeit, és hátrányait. A szerelési szabályzat általi „iskolaszerelési eljárások”, és a végrehajtás lehetőségei nem ugyanazt jelentik. Egy esetleges körülmény változó kizökkeni a végrehajtót, és improvizálnia kell valamit, amely hasonló eredményt hoz. A tűzoltó folyamatosan gordiuszi csomókat vág át azért, hogy a hatékony instanciáit megőrizze. Szükségszerű lemodellezési folyamatokat, és mérhetővé tenni a nyereséget, az eljárások között. Az ilyen típusú gyakorlat alatti empirikus folyamatok, és a
közvetlen értékelés növeli a problémamegoldó képességünket. A mérések által átélő minimális stressz szint is hasznossá válhat, hiszen kis mértékben modellezi a beavatkozások légkörét.

Mivel alapvetően alkalmazott protokollok egymáshoz viszonyított eredményességéről van szó, szükségszerűnek látom a kapott eredményeket megosztani azokkal a felhasználókkal, akik nem, vagy csak ritkán találkoznak speciális helyszínekkkel, problémákkal. A nyert eredmények oktatási segédleten keresztüli keresztüli megosztása egy tananyag mellékleteként, akár elektronikus formában is elérhető lenne, és így gyakorolható, esetleg fejleszthető más egységek által.

Mivel a **súlyponti erőmegosztáshoz**, illetve annak felismeréséhez is szükségesek azok a megállapítások, amelyeket ilyen típusú gyakorlatok alatt szerzünk be, ezért a szervezet érdeke, hogy a beosztott tűzoltó, és a tűzoltásvezető ilyen szempontú felkészítése megvalósuljon. A megoldási lehetőségekből kézenfekvő lesz kiválasztani a leginkább hatékonyabbat, amellyel időt nyernek a végrehajtásban részt vevők, vagy felismerik időkorlátjaikat. Ezeknek a módozatoknak a begyakorlása és abból készögszintű választás a közvetlen vezető szintje (személyes vezető). Elengedhetetlen, hogy a kárhelyszínen döntési helyzetben lévők szakmai kompetenciája alulról, tehát a végrehajtás szintjétől épül el fel. Azok, akik a mozdulatszintű végrehajtást már begyakorolták számos környezetben, megfelelő döntési alternatívákhoz jutottak, amelyre már lehet egy személyes vezetői szintet építeni. Mindezek alapján, kimondható, hogy a tűzoltás vezetésének a folyamata eltér a szervezeti vezetői folyamatoktól, ezért nem szükség szerűen kompatibilisek egymással.

A súlyponti erő, eszköz meghatározás által tudatosabb feladatvégrehajtás valósulhat meg, hiszen a beavatkozás egészét mind vertikálisan (beosztott, személyes vezető, vezető, irányító), mind pedig horizontálisan (a részt vevő egységek száma, képességei szerinti végrehajtási lehetőségek részére bonthatjuk). Az analizált folyamatok elkülönülő feladatait tudatosabban ismerhetjük fel, az irányítás folyamatát könnyebb átláthatjuk.

A későbbi kutatásainm, ezen elvek mentén arra irányulhat, hogy milyen mérhetőségen alapuló gyakorlatok alkalmazhatók a tűzoltás szervezetének hatékonyabb kialakításának vizsgálatához, amely a feladatok gyorsabb pontosabb lehatalmazásához, a vezetői szintek célszerű szervezéséhez vezethet, beleértve az egyéb kialakítható segítő beosztások kialakításának fontosságát.
ÖSSZEGZETT KÖVETKEZTETÉSEK

Megállapításom alapján, a tűzoltási szervezet szakszerű felépítése, és működtetése csak akkor lehetséges, amennyiben beazonosítjuk azokat a káresemény aktív folyamatokat, és az ehhez szükséges erőigényt, amelyek egyben a káresemény súlypontjai is. Feltételezésem szerint egy veszélyhelyzeti folyamat aktívnak tekinthető, amennyiben a környezetre gyakorolt negatív hatása – beavatkozás nélkül – a vizsgálat pontjában még mérhető emelkedést mutat. Az önálló tűzoltói erőt, eszközt, és irányítást igénylő folyamatok definitiójaként a súlypont fogalmi meghatározást tartom fontosnak bevezetni, amely alapja lehet a későbbi szervezési fejlesztési irányoknak. A súlyponti erőmeghatározás szempontjából két fontos szervezési elvet állapítok meg, amely befolyásolja a beavatkozások sikerességét. Egyrészről, — az elkülönülő vezetés érdekében — az önálló erőt, eszközt, és irányítást igénylő káresetekhez különálló tűzoltásvezető jelenlétét tervezni, másrészről a súlyponti helyzetek, és jellemzőek figyelembe vételével a káresetek felszámolásához szükséges erőket ezen elvek mentén meghatározni.

A súlyponti erőmegosztáshoz kapcsolódó alapelv szerint a feladatokat végrehajtó állomány közvetlen vezetője ne legyen a tűzoltás egyszemélyes felelős vezetője, amennyiben más irányítói feladatokkal együtt kell azt végeznie. A meghonosodott eljárási rend szerint a tűzoltásvezető (amíg nem érkezik a helyszínre magasabb beosztású vezető vagy a Katasztrófavédelmi Műveleti Szolgálat tűzoltásvezetésre jogosult állománya) egyrészt kénytelen vezetni a saját állományát, másrészt a további egységeket is irányítani vezetőjük útján, különösen a beavatkozások korai, annak dinamikus változó, aktív szakaszaiban, ahol rendszerint minden erőt, eszközt be kell vetni az eredményesség érdekében.

Az azonnali elkülönülő vezetés kialakításának a gondolata nem új, különösen a korai időben beazonosított, komplex feladatok végrehajtását igénylő tűzoltói beavatkozásnál, azonban az alacsonyabb szervezési igényű feladatrendszernek történő bevezetése, csak más európai országoknál (pl.: Németország) történt meg.

Ez a rendszer Magyarországon nyilvánvalóan humánerőforrás igényes is lehet, azonban a jövőben ez a kezdeményezés a biztonságos munkavégzés irányába mutatna. Az egy feladat-egy vezető elv nemcsak feladat megosztási kérdés, hanem biztonsági kérdés is egyben. Meghatározó eleme a tűzoltás vezetésének, hogy a rajok parancsnokai általi vezetés alapvetően a saját állományukra korlátozódjon, a magasabb szintre pozicionált vezetők jelenléte pedig mindenképpen biztosítva legyen, az irányítást is igénylő feladatok
végrehajtásánál. A vezetési, és végrehajtási szintek újragondolása, valamint az irányítási formák újra értelmezése, a biztonságos munkavégzés feltételeit erősíthetik.

A második fejezetben meghatároztam, hogy a szervezhető beosztásokon keresztül végrehajtható feladatkörök összehangolása az elsődleges feladatköre a tűzoltás vezetőjének, amennyiben a káreset valamely területe, vagy ahhoz köthető feladat nem a közvetlen irányítása alá esik. Mivel a katasztrófavédelem tűzoltó egységeinek a szervezeti kultúrája parancsuralmi rendszerre épül, ezért feltételezésem alapján leginkább Fayol korai klasszikus leadership (vezető) modellje valósul meg. Ebben az esetben a vezető a hozzá fűződő hatásköre alapján meghatározza a beosztottaktól az elvárt tevékenységet a saját akaratának, és a szervezet célkitűzésének megfelelően. Megállapításom alapján a tűzoltás szervezetének 4 szintje azonosítható be koordinációs szempontból, amelyek az irányítói szint, a vezetési szint, a személyes vezetési szint (operatív vezetés), valamint a beosztotti szint. Ebből az első háromnak lehetősége, sőt kötelezettsége van korrekciókat végezni a tervezés, és a vezetés folyamatában. Ezzel összefüggésben megállapítottam a tűzoltásvezetéshez kapcsolódó hangsúlyos vezetői funkciókat a kárhelyszínen, valamint az irányítás, vezetés, személyes vezetés egymásra hatását.

A vezetői szintekhez kapcsolódóan meghatároztam a stratégiai, és a taktikai feladatokat, valamint az ezekhez kapcsolódó célokat. Az önállóan beavatkozó taktikai egység feladatainak a vizsgálatánál megállapítottam, hogy a személyes vezető biztosítása megkerülhetetlen a káresemény teljes időtartamában. Meghatároztam a terület, és a feladat alapú erő, és eszközmegosztás alapelveit, ami által a káresemény súlypontjai, és ezáltal a szükséges erőforrás és pontosabban kialakítható a káresetek felszámolásához. Ezek a feladatok rendszerint keverten is megjelennek, de összességében lehetséges külön kezelni ezeket az elveket. A terület alapú súlyponti erőmegosztásnál a tűzoltás vezetője nem lát rá a munkafolyamatokra, mert azok akár más helyiségben, szinten, épületrészben, vagy más épületben folynak. Amennyiben fizikailag rálát a folyamatokra a tűzoltásvezető, de azokat nem tudja személyesen egyszerre felügyelni, akkor feladat alapú súlyponti erőmegosztásról beszélünk. A második fejezetben kategóriákra bontottam a súlypontokat jelentő feladatokat, majd érték alapú rangsorolással kialakítottam a mentési sorrendet. Feltételezésem alapján a beavatkozások többsége alapvetően komplex feladatszervezést igényel, szükségszerű lenne a beavatkozások feladatainak ilyen módon történő kategorizálása.

A tűzoltásvezetői szinthez legerősebben az irányítás kapcsolódik, amely a feltételezésem szerint vertikálisan magasabb szintet jelent a vezetésnél. Annál az eseménysztruktúránál, ahol a
tűzoltásvezető nem tud primer információkhoz jutni szükségszerűen le kell azokat határolni, és önálló súlypontként kezelní, önálló erő, eszköz, és létszám hozzárendelésével, személyes vezető jelenléte mellett. Nem elvárható megfelelő alternatíva kiválasztása olyan személytől, aki nem kap vizuális megerősítést a körülményekről. Megállapításom szerint egy fő személyes vezetésével végrehajtható azonos típusú feladatok száma — kizárólag azonos helyszínen — csak egy lehet, tehát akkor lehetséges több taktikai egység munkáját vezetnie egy személynek, amennyiben az egy helyszínen van, egymástól jellegükben nem térnek el, valamint a közvetlen rálátás biztosított, illetve a kommunikáció folytonossága zavartalan.

A harmadik fejezetben kiemelt példákon keresztül megállapítottam, hogy a korábban rögzített faábra kategóriák alapvető, feltétlenül szükséges erőket, és eszközöket rendelnek az eseményekhez. Olyan mennyiségőről, és minőségőről beszélünk, amely nem biztos, hogy elegendő a végleges feladatmegoldáshoz, mindeközben a feladatok nagy mennyiségében a beavatkozások korai szakaszában keletkeznek, tehát eltérés lehet az induló erő, és a szükséges végleges erő között. Az eseményeket jellemző egyes — mérhető — kritikus információknak tehát meghatározó szerepe van az eseményekhez szükséges erő-eszköz mennyiség tekintetében. A beavatkozások hatékonyságára minden esetben az arányosan alkalmazott, és hatékonyan használt erő, és eszközminőségtől függ. A felismerése annak, hogy olyan eseménnyel állunk szemben, amely különleges eljárásrendet igényel, mind technikai, mind szervezési, mind pedig létszám tekintetében létfontosságú, hogy a megfelelő erő, és eszköz legyen alkalmazva a felszámoláshoz. A harmadik fejezetben elemzett középmagas, és magas lakóépületek esetében, sok esetben határozottan elkülönülnek a terület alapú, és a feladat alapú súlyponti helyzetek, mindamellét együtt is jelentkeznek azok. Azok a feladatok, amelyek tűzoltás-taktikai szempontból indokoltak, határozzák meg a súlypontok számát, ezáltal a szükséges erőket is. Szükségesnek tartok olyan egységes szempontrendszert használni, amely az esemény súlypontjaihoz rendeli hozzá a létszámot, nem pedig az esemény típusához. Megállapításom szerint az ilyen típusú beavatkozások kritikus elemeinél már beazonosított feladatok, valamint a hozzárendelt végrehajtó állomány célirányos alkalmazása, valamint a feladatok fontossági sorrendjének kialakítása kidolgozható, és fejleszthető.

A fejezet sugárveszélyes kárfelszámolásával foglalkozó részében a méréssel kapcsolatban megállapítottam, hogy személyi doziméterek és más sugárzásmerő műszerek sincsenek a tűzoltó egységek gépjármű-fecskeendőin, ezért a káresetek korai szakaszában mért
eredmények nélkül kénytelenek várakozni vagy kockázatosan beavatkozni. A főváros kivételével (ahol 2 percen belüli indulással rendelkeznek) a területi szervek állományába tartozó, műszeres támogatással rendelkező KML hatályos belső szabályzó által előírt, hivatali munkaidőn kívüli (16:00-7:30) 1 órás riasztási normaideje miatt jelen állapotában nem tud megfelelő felderítéssel szolgálni a kárhelyszín parancsnokának, a tűzoltásvezetőnek. Ezért a 39/2011. BM rendelet, a felderítésre vonatkozó részének nem tud megfelelni. Ennek az időkülönbségnek a felszámolására a KML készenléti jellegű szolgálati munkarendbe történő átállítása lenne a megoldás, illetve a másik lehetőség a Hivatásos Tűzoltó-parancsnokságok, és Katasztrófavédelmi Őrsök tűzoltó gépjárműveinek radiológiai mérőeszközökkel történő ellátása. Ez azonban azzal jár, hogy az állományt radiológiai továbbképzésben kellene részesíteni, lehetőség szerint több szinten (beavatkozói, vezetői, döntéshozói), több formában (elméleti, laboratóriumi-, terepyakorlat).

Ennek a veszélyhelyzetnek a jellemzője, hogy a kezdeti szakaszban is komplex feladatokat keletkeznek, jellemzően komoly logisztikai igénye is van, amelyet viszonylag hosszú időn át fenn kell tartani. Az elsődleges beavatkozók feladatai nem teljesen egyeznek meg a káresemény későbbi szakaszában kialakított magasabb rendű szervezeti forma feladataival. Az időnyomás, különösen közúti balesetnél, életveszély esetében, vagy tűzesettel (robbanással) kombinálva sokkal nehezebb helyzet elé állítja a tűzoltásvezetőt, aki egyszemélyi felelős vezetője a beavatkozásnak, mint a későbbiekben megalakuló törzs magasabb, a feladat végehez jutásához már akár szakértői támogatással is rendelkező vezetőit.

A csarnok típusú, raktározási, vagy termelői funkciókbeli rendelkező létesítmények esetén, különösen amennyiben nem rendelkeznek beépített tűzoltó berendezéssel, és nagy — akár több ezer négyzetméteres — egybefüggő tűzsakaszokat tartalmaz már okszerűen feltételeznünk kell a nagy kialakult tűzterületet a tűzoltó egéségek kiérkezésének időpontjában. A nagy tűzterületek esetén, még szerencsés esetben sem tudjuk a teljes tűzfelületet oltani, csak annak egy részét. Stratégiailag azért feltétlenül szükséges a korai szakaszban lokalizálni a tűzet, mert a teherhordó tetőszerkezetek szerkezeti acél elemeinek 500 C fok felett olyan mértékben csökken a szilárdsága, hogy elveszíti állékonyságukat. Tehát az oltási problémán kívül komoly biztonsági kérdés is a bent tartózkodók számára ez a helyzet. A teljes lángba borulás kialakulása előtt kell a megfelelő adagolási intenzitással támadnunk a tűzet, hogy a lehetőség megmaradjon a tűz teljes kifejlődésének a megakadályozására. Ehhez fontos ismerni a létesítményben tárolt anyagokhoz kapcsolódó időegységre vonatkoztatott oltóanyag adagolási intenzitást, valamint a lehetséges támádási irányokat is. A riasztás minősítését meghatározó módon befolyásolja az alapterület (az egy
tűzszakaszban található veszélyeztetett terület is), valamint az ehhez alkalmazható technikai eszközeink kapacitása (pl. sugárcső teljesítmény, szivattyú teljesítmény, rendelkezésre álló oltóanyag mennyiség). A műveletirányító jogosult emelni a faábra által felajánlott riasztási fokozatot, azonban ez ritkán következik be, és szubjektívet megítélése alapszik. A további erők indítása a helyszínre érkező tűzoltásvezető visszajelzése, valamint konkrét igénye alapján történik. Pontosabb erőgazdálkodást tenne lehetővé a terület méretéhez, és a tárolt anyaghoz kalkulált tűzoltói élő erő, és technikai kapacitás.

A negyedik fejezetben, a kutatási tervemben előirányzott reprezentatív felmérésként végrehajtott kérdőív vizsgálatokat elemezt. Az egymástól eltérő időpontban elvégzett vizsgálatok alapján bebizonyítottam, hogy a speciális (különös tekintettel a sugárveszélyes területen, és a veszélyes anyag jelenlé tében végrehajtott) tűzoltói beavatkozásokat érintő technikai feltételek, és kiképzettség tekintetében a válaszadók véleménye eltér az általános tűzoltói beavatkozások hasonló szempontok szerinti értékelésétől. Az adatok értékelése során arra a feltételezésre jutottam, hogy egyes — speciális tudást igénylő — tűzoltói feladatok esetén a szakmai tapasztalat növekedésével a saját tudásuk értékelése fordítottan arányos. A feltételezésem igazolásaként korrelációs vizsgálatot végeztem a rendelkezésemre álló adatokkal, amely eredményeként gyenge negatív korrelációs összefüggést találtam a tűzoltásvezetők tapasztalata, és a saját képzettségük megítélése terén. Matematikai statisztika módszereivel (Pearson-féle korreláció (r) számítás és lineáris regressziós görbék az adatokra való illesztésével történő korreláció (r²) meghatározása) ellenőriztem a feltevésemet. A nagyobb tűzoltásvezetői tapasztalattal rendelkező tűzoltók általi képzettség alul értékelése a kevesebb gyakorlattal rendelkező kollégákhoz képest vélhetően a nagyobb esetszámhoz kapcsolódó tapasztalatból adódó nagyobb objektivitásából ered, amiket a pályafutásuk alatt megoldottak. Mindenesetre, mind az általános feladatokhoz tartozó, mind pedig a sugárveszélyes feladatokhoz társuló képzettség esetében a lineáris regressziós görbe hasonló, amely előre jelzi azt a folyamatot, hogy a tűzoltói gyakorlat növekedésével kritikusabbá válik a munkáját végző a saját felkészültségét illetően.

A kérdőívek elemzése során bebizonyosodott, hogy a bizonytalan felderítés elkerülése érdekében szívesen alkalmaznának a kárhelyszínen a KML állományát, amely a korábbiakban kifejtettek alapján, a beavatkozások korai szakaszában csak a fővárosban állhat a rendelkezésre. A veszély vállalása egyértelműen megjelenik a tűzoltók részéről életmentes esetében, viszont — különösen sugárveszélyes területen — egy ismeretlen tényező jelenléte esetén már megfontolnák a beavatkozás késleltetését a biztonság érdekében. Mind ezek rávilágítottak arra a tényre, hogy a bizonytalanság, a mért értékek hiányából adódik. A
felderítés szükségszerűségét minden tűzoltó ismeri, mert a képzése során megtanulta, és a munkája során, a vonatkozó jogszabályok értelmében kötelessége elvégezni. A vizuális megerősítéssel, vagy mérésel nem alátámasztható felderítésből fakadó probléma kihat a beavatkozás sikerére, hiszen elsődleges szervező munkát sem tudunk végezni a szükséges információk nélkül. A fejezetben leírt kutatás eredményeképpen, összességében arra a megállapításra jutottam, hogy a tűzoltásvezetők veszélyes anyagok jelenlétében, és radiológiai veszély esetében mind tudásukat, mind technikai alkalmazásukat alul értékelik. Ezek alapján azt a következtetést vontam le, hogy ezeket az eseményeket „közelebb” kell hozni a beavatkozó tűzoltókhoz, a szükséges felszerelésekenként el kell látni őket (pl.: személyi doziméter), használatukra ki kell őket képeznünk, és a mérésekkel kapcsolatban nagyobb hangsúlyt kell fektetni olyan gyakorlatok szervezésére, amelyek esetében mérés általi, felderítési információk használata szükséges.

Az ötödik fejezetben a felkészítés lehetőségeivel foglalkoztam, amelyek összefüggésben vannak a súlyponti erőmeghatározás elveivel. A tűzoltó, a munkavégzése során igyekszik lényegre történő, hatékonyan dolgozni, mert az adott helyzetben alkalmazható, a célterületen kielégítő egyszerű megoldási verziót részesíti előnyben. A hivatása gyakorlása közben egy korábbi, általa megjósolt, sikeresen végrehajtott megoldások közül választ egyet. A tűzoltói mérce, tehát az egzakt mérésen túli előzetes szubjektív hatékonyságvizsgálat is döntő az eseménykezeléshez alkalmazott eljárások tekintetében. Ez elkerülhetetlen folyamat, és nem zárja ki a szakszerű munkavégzést, tehát elengedhetetlen a mentális térkép fejlettsége. A tűzoltót jellemző heurisztikák segítik őt a problémák megoldásában.

A tűzoltói találékonyság, a megoldási verziók egymáshoz való hasonlításából fakad, amely hatékonyságában a procedurális, az epizodikus, és a szemantikus emlékezetek jelentős szerepe van. A tanulni, gyakorolni, mérni, elemezni, ismételni elvek mentén a tűzoltói gyakorlatok rendszere fejleszthető, amely igényli az intervenciós kör szerinti megközelítést. A gyakorlatok esetében, azt az elemét fejleszthető az eljárásainknak, amelyet tudatosan kiválasztoztunk, és a hatékonyság szempontjából fontosnak ítélünk meg. A modellértékű környezetben végrehajtott gyakorlatok, vagy elméleti tréningek után könnyebben asszociálunk a valós eseményeknél, míg az ilyen jegyeket alig, vagy nem hordozó helyszínek, szituációk közben kevés érdemi információ rögzül a hosszú távú memóriában. A szakmai fejlődést biztosító elveket, és a tananyag körének koncentrikus bővítésének megfelelően kell meghatározni, és a képzés során alkalmazni.

A felkészítő gyakorlatok közül a vezetési, a szerelési, és a tűzoltótechnikai kezelési gyakorlatot készségfejlesztő gyakorlatnak tartom, míg a többi gyakorlatot inkább a
mentális térképet fejlesztő gyakorlattípusnak. A begyakorló, és az ellenőrző gyakorlat a vezetői mentális térkép fejlődéséhez is hozzájárul. A szituációkon keresztül végrehajtott gyakorlatok fejleszítik a problémamegoldó képességet, amennyiben valósághoz közeli modellen keresztül tudtuk azt végezni. Ennek kialakításához, megállapításom szerint az intervenciós kör elemeit kell használnunk. Fontosnak tartom, hogy a gyakorlatok meghatározó részleteit előzetesen megvizsgálva, azokhoz már a gyakorlat tervezési időszakában megoldási lehetőségeket párosítani. Új elemként az összehasonlító, vagy kizárólag mérésen alapuló gyakorlatokat emelném ki mint könnyen mérhető gyakorlat fajtát, amikor lényegében egy kvalitatív tudományos eljárást végzünk folytatunk le. Az eljárásunkat tekinthetjük kísérletnek, amely része a gyakorlati problémát megoldó intervenciós körnek, hiszen választ kapunk egy felmerült gyakorlati, esetleg elméleti problémára.


Mivel a súlyponti erőmegosztáshoz, illetve annak felismeréséhez is szükségesek azok a megállapítások, amelyeket mérés alapú, vagy összehasonlító gyakorlatok alatt szerzünk be,
ezért szükségszerűnek látom a kapott eredményeket megosztani azokkal a felhasználókkal, akik nem, vagy csak ritkán találkoznak speciális helyszínekkel, problémákkal. A nyert eredmények oktatási segédleten keresztüli megosztása egy tananyag mellékleteként, akár elektronikus formában is elérhető lenne, és így gyakorolható, esetleg fejleszthető más egységek által.

A megoldási lehetőségekből kézenfekvő lesz kiválasztani a leginkább hatékonyabbat, amellyel időt nyernek a végrehajtásban részt vevők, vagy felismerik időkorlátjaikat. Ezért kimondható, hogy a mérés alapú, modellértékű, összehasonlító, az intervenciós kör szakaszait figyelembe vevő képzési célú tűzoltói gyakorlatokkal fejleszthető a tűzoltók gyakorlati, és vezetői képességei.

A későbbi kutatásaim, ezen elvet mentén arra irányulhat, hogy milyen mérhetőségen alapuló gyakorlatok alkalmazhatók a tűzoltás szervezetének hatékonyabb kialakításának vizsgálatához, amely a feladatok gyorsabb pontosabb lehatárolásához, a vezetői szintek célszerű szervezéséhez vezethet, beleértve az egyéb kialakítható segítő beosztások kialakításának fontosságát.
ÚJ TUDOMÁNYOS EREDMÉNYEK

1. Bebizonyítottam, hogy a térben, és feladattípusban eltérő tevékenységet végzők a tűzoltási szervezetben személyes vezetést igényelnek, amelyet a tűzoltásvezető egyéb irányítói feladatai mellett nem tud hatékonyan végezni, ezért szükséges a káresemények teljes időtartamában biztosítani a különálló vezetés személyi feltételeit.

2. Megalkottam a tűzoltói beavatkozások során alkalmazandó súlyponti erőmegosztás fogalmát és elveit, amely pontosabb irányítást és erőgazdálkodást tesz lehetővé a szükséges erők tekintetében valamint elsőként tettem javaslatot az alkalmazásukra.

3. Bebizonyítottam, hogy egyes káreseményekhez riasztandó tűzoltó erők pontosítására a terület alapú, a feladat alapú és az idő alapú erőmegosztás alkalmas.

4. Kérdőíves vizsgálattal bebizonyítottam, hogy eltérések vannak a tűzoltásvezetők saját képzettségük megítélésenek tekintetében az általános és egyes speciális szaktudást igénylő beavatkozások között.

5. Kérdőíves attitűdvizsgálattal kimutattam, hogy egyes speciális szaktudást igénylő beavatkozások tekintetében nincs összefüggés a tűzoltásvezetők szakmai tapasztalata és a saját képzettségük megítélése között.

6. Bebizonyítottam, hogy a káresetek felszámolásának a hatékonysága, gyorsasága, és biztonsága növelésének érdekében szükséges a mérhetőségen, és az összehasonlításon alapuló gyakorlatok beillesztése a tűzoltók felkészítésének a rendszerébe.
AJÁNLÁSOK

A dolgozatommal elsősorban a katasztrófavédelemben alkalmazott erőgazdálkodási rendszerek elvi fejlesztési lehetőségeit vizsgálva, a pontosabb erő, eszközmenység meghatározására, ezáltal a hatékonyabb, biztonságosabb beavatkozásokhoz szükséges erők kirendelésére nyílik lehetőség. Az aktív folyamatok beazonosítása, ezen belül az esemény felszámolásánál — különösen annak kezdeti szakaszában — felismert súlypontok, és az ehhez szükséges emberi, és technikai igény kalkulációja több alkalmazott tűzoltási, és műszaki mentési eljárásunk erőgazdálkodásának újra gondolásához nyújt segítséget. Mind a riasztási rendszer, mind pedig a helyszíni eseményminősítés során alkalmazható ez a megközelítés.

A különálló vezetés biztosítása a káresetek kezdeti szakaszában segít felismerni a tűzoltásvezetőnek a stratégiaiag szükséges lépések kidolgozását a komplex feladatok végrehajtásánál. Ennek a megközelítésnek a meghonosodása (jogszabályi keretek módosíthatósága, és humánerőforrás kérdések figyelembe vételével) a nagyobb erőt, eszközt igénylő káresetek során kialakított tűzoltási szervezetek pontosabb kialakításához vezethetnek.

A felkészítés rendszerében megállapított lehetőség bizonyíthatóan előnyösebb megoldások kidolgozásához vezetne, és beépíthető a kiképzés rendszerébe, mert az egymáshoz viszonyított protokollok használhatósága különböző „élő” helyszíneken azonnali intervenciós visszaacsatolást tesz lehetővé a gyakorlaton részt vevők számára.
1. Az általam javasolt eljárások rendszerszintű integrációjával a veszélyes környezetben végrehajtott mentési tevékenységek biztonsági kockázatai csökkenthetők.

2. A tűzoltói beavatkozás szempontjából hatékonyabb feladat-végrehajtás, és az erőforrások — az esemény jellegéhez, és nagyságához szükséges — a felmerült igény szerinti bevetése dolgozható ki.

3. Környezetvédelmi szempontok nagyobb érvényesülését várom a pontosabb erőmeghatározási elvek kidolgozásával, és használatával.


5. A felkészítés hatékonyságának növelésére képzési rendszer módosítása lehetséges, amellyel a gyakorlati képzés eredményei pontosabban mérhető.

6. Több alkalmazott tűzoltási mód esetében tudományos alapokon meghatározott erő, és eszköz kalkuláció alakítható ki az eseményekhez, amellyel a káreseti felszámolás ideje csökkenthető.

7. Pontosabb beavatkozás-értékelési, és gyakorlattervezési lehetőségek valósulnak meg amelyek felhasználhatók a felkészítés területén.

8. A biztonságosabb beavatkozási környezet megvalósíthatósága lehetséges a pontosabb erőforrásigény megállapításával.
Felhasznált irodalom


[13] 16/2016. BM OKF Főigazgató intézkedés a hivatásos katasztrófavédelmi szervek műveletirányításának rendjéről és a riasztás szakmai szabályairól
[22] BM OKF 109/2000. számú Intézkedése a beavatkozáshoz szükséges erő-eszköz és oltóanyag számítás módjáról


[26] 20/2018 BM OKF Főigazgatói Intézkedés A tűzoltási műszaki mentési tervre kötelezett létesítmények, területek köréről, valamint a Tűzoltási műszaki Mentési Tervek tartalmi és formai követelményeiről


[34] Rácz Sándor, Finta Viktória Tímea: Tűzoltók sugárvédelme Hadmérnök 13:(4) (2018)

[35] Intercityvel ütközött egy izotópszállító BM OKF
From Pre-Weberianism to Neo-Weberianism? Presented Papers from the 22nd NISPAcee Annual Conference, 2014. p.1

http://hadmernok.hu/161_09_hoffmanni_kui_vgy.php_(letöltve: 2018.03.12.)

http://hadmernok.hu/161_10_hoffmanni_kui_vgy.php_(letöltve: 2018.03.12.)


http://hadmernok.hu/164_08_horvath.pdf_(letöltve: 2018.03.12.)


[54] Földi László-Körmendy Norbert: Katasztrófaveszély felderítés 1. Általános felderítési feladatok. 1. oldal; http://www.zmne.hu/tanszekek/vegyi/docs/fiatkut/pdf/korm_04_03.pdf ; Letöltés ideje: 2017.10.05

[55] Rácz Sándor, Finta Viktória: Tűzoltói beavatkozás aspektusai sugárveszélyes káreseménynél Konferencia helye, ideje: Budapest, Magyarország, 2017.11.16 Budapest:

[56] Finta Viktória, Rácz Sándor: Tűzoltói beavatkozások radiológiai eseménynél


[58] Finta Viktória, Rácz Sándor: Tűzoltói beavatkozások radiológiai eseménynél


Rácz Sándor: Decision Making Support in Case of Large Scale Storage Fires


54/2014 BM Rendelet (XII.5) az Országos Tűzvédelmi Szabályzatról https://net.jogtar.hu/jogszabaly?docid=A1400054.BM


[74] Forgács Attila: Szociálpszichológia (oktatási segédanyag)  
[75] Restás Ágoston: Tűzoltásvezetők kényszerhelyzeti döntéshozatala; Ph.D. értekezés; BUDAPESTI CORVINUS EGYETEM; BUDAPEST 2012. pp. 74  
[76] 57/2016. számú BM OKF intézkedés a hivatásos katasztrófavédelmi szerveknél folyamatos ügyeleti szolgálat ellátására szervezett, valamint a készenléti jellegű beosztásokban, váltásos szolgálati időrendszerben foglalkoztatottak szolgálateljesséítési időkeretének meghatározásáról  
[78] 60/2016. számú BM OKF Főigazgatói intézkedés a készenléti jellegű szolgálatot ellátó tűzoltó állomány napi továbbképzésének, valamint a tűzoltósági szakterület által tartandó gyakorlatok rendszerének szabályairól  
[80] Fazekasné dr.Fenyvesi Margit: Orientációs képességek fejlesztésének módszertana (2013) 3.4.1 fejezet  
[81] 2015. évi XLII. törvény a rendvédelmi feladatokat ellátó szervek hivatásos állományának szolgálati jogviszonyáról 44§ (2)  
https://net.jogtar.hu/jogszabaly?docid=A1500042.TV#lbj0ida4fa
[82] 3/2015. számú BM OKF Főigazgatói utasítás a tűzoltóságok szerelési szabályzatáról
[84] A BM Országos Katasztrófavédelmi Főigazgatóság Kiképzési Szabályzatának kiadásáról szóló 85/2014. számú BM OKF intézkedés
[88] Borbély Csaba: A tanulás-emlékezési és gondolkodási zavarok diagnosztikája Országos Klinikai Idegtudományi Intézet; előadás 5-45 dia. (letöltve 2018.07.28) http://semmelweis.hu/klinikai-pszichologia/files/2012/06/Borb%C3%A9ly-Csaba-Mem%C3%B3ria.pdf


[93] Restáš Ágoston, Pályta Péter, Horváth Lajos, Rácz Sándor, Hesz József: A tűzvédelem komplexitása a korszerű megelőzéstől a hatékony beavatkozásig


http://semmelweis.hu/klinikai-pszichologia/files/2012/06/Borb%C3%A9ly-Csaba-Mem%C3%B3ria.pdf (letöltve 2018.07.20)


[98] Vincze Zsolt: Alapvezeték szerelés középmagas épületnél (szerelési gyakorlat Budapesten 2013. feljegyzés a gyakorlatról, a szerző engedélyével)

[99] Szili István: Középmagas és magas épületek megelőző tűzvédelem BSC szak dolgozat 2018. NKE Katasztrófavédelmi Intézet

[100] 102/2012. BM OKF Főigazgatói utasítás a tűzoltóságok szerelési szabályzatáról
[101] 259/2011. (XII. 7.) Korm. rendelet a tűzvédelmi hatósági feladatokat ellátó szervezetekről, a tűzvédelmi bírságról és a tűzvédelemmel foglalkozók kötelező élet- és balesetbiztosításáról

A szerző publikációs jegyzéke

Külföldi idegen nyelvű folyóiratban

1. Rácz Sándor:
Focusing on the problems of extinguishing large scale storage fires

Magyarországon megjelenő idegen nyelvű folyóiratban

2. Rácz Sándor:
Firefighting problems in case of large outdoor fires
3. Érces Gergő, Bérczi László, Rácz Sándor:
The effects of the actively used reactive and passive fire protection systems in the view of buildings LCA with innovative fire protection methods

Magyar nyelvű mértékadó folyóiratban

9. Rácz Sándor:
A tűzvizsgálati eljárás eredményessége a veszélyes helyszíni eljárási cselekményeket végzők felkészülségének szempontjából
http://www.hadmernok.hu/180kofop_08_racz.pdf

10. Pántya Péter, Rácz Sándor:
Vízben végrehajtott mentés oktatása és annak tapasztalatai a Katasztrófavédelmi Oktatási Központban, valamint a Nemzeti Közszolgálati Egyetemen
BOLYAI SZEMLE 23:(3) pp. 51-61. (2014)
http://archiv.uni-nke.hu/downloads/kutatas/folyoiratok/bolyai_szemle/Bolyai_Szemle_2014_03_online.pdf

11. Rácz Sándor: A tűzoltói beavatkozások súlyponti erőmegosztásának vizsgálata
http://hadmernok.hu/170kofop_06_racz.pdf

12. Finta Viktória, Rácz Sándor: Tűzoltói beavatkozás radiológiai eseménykezelésnél
Védelem tudomány : Katasztrófavédelmi online tudományos folyóirat 1:(3) pp. 68-77. (2016)
http://www.vedelemtudomany.hu/articles/06-finta-racz.pdf

13. Rácz Sándor:
Döntéstámogatás nagy kiterjesztő raktártüzek esetén
Védelem tudomány : Katasztrófavédelmi online tudományos folyóirat 1:(1) pp. 30-43. (2016)
http://www.vedelemtudomany.hu/articles/03_Racz.pdf

Lektorált idegen nyelvű előadás

14. Finta Viktória, Rácz Sándor:
Firefighter Intervention in Radiological Emergencies
In: Branko Savić, Verica Milanko, Mirjana Laban, Eva Mračkova, Restás Ágoston Branka Petrović (szerk.)
(5th INTERNATIONAL SCIENTIFIC CONFERENCE ON SAFETY ENGINEERING AND 15th INTERNATIONAL CONFERENCE ON FIRE AND EXPLOSION PROTECTION)


15. Rácz Sándor, Finta Viktória:
Prof Dr Goran Ristić (szerk.)
OCCUPATIONAL SAFETY OF FIREFIGHTERS IN RADIOLOGICAL EMERGENCIES
http://www.rad-proceedings.org/paper.php?id=118

Magyar nyelvű előadás

16. Rácz Sándor, Pántya Péter: Döntéstámogatás erő-eszköz számítás alapján

17. Finta Viktória, Rácz Sándor: Tűzoltói beavatkozások radiológiai eseménynél

18. Rácz Sándor, Finta Viktória: Tűzoltói beavatkozás aspektusai sugárveszélyes káreseménynél
19. Restás Ágoston, Pántya Péter, Rácz Sándor, Hesz József:
A Tűzvédelmi- és mentésirányítási tanszéken folyó tudományos kutatások komplexitása
Konferencia helye, ideje: Budapest, Magyarország, 2017.11.16 Budapest: BM Országos

20. Restás Ágoston, Pántya Péter, Horváth Lajos, Rácz Sándor, Hesz József: A
tűzvédelem komplex oktatása a Nemzeti Közszolgálati Egyetem Katasztrófavédelmi
Intézetében
Konferencia helye, ideje: Szentendre, Magyarország, 2016.03.02 Budapest: BM OKF,

21. Rácz Sándor, Pántya Péter:
Nagy alapterületű létesítmények tűzoltásához szükséges erők eszközök riasztásának
döntéstámogatása
In: Restás Ágoston, Urbán Anett (szerk.)
Konferencia helye, ideje: Budapest, Magyarország, 2015.11.26 (Nemzeti Közszolgálati
(ISBN:978-963-87837-9-0)
https://kvi.uni-nke.hu/document/kvi-uni-nke-hu/katasztrofavedelem-2015-
ii_resz.original.pdf

22. Restás Ágoston, Pántya Péter, Horváth Lajos, Rácz Sándor, Hesz József:
A tűzvédelem komplexitása a korszerű megelőzéstől a hatékonny beavatkozásig
In: Restás Ágoston, Urbán Anett (szerk.)
Konferencia helye, ideje: Budapest, Magyarország, 2015.11.26 (Nemzeti Közszolgálati
(ISBN:978-963-87837-9-0)
https://kvi.uni-nke.hu/document/kvi-uni-nke-hu/katasztrofavedelem-2015-
ii_resz.original.pdf
Idegen nyelvű abstract

23. Rácz Sándor:
Decision Making Support in Case of Large Scale Storage Fires
In: Konferencia Szervezőbizottsága (szerk.)

Magyar nyelvű kivonat

24. Rácz Sándor:
Nagy alapterületű létesítmények tűzoltásához szükséges erők-eszközök meghatározása
In: Keresztes Gábor (szerk.)
Mellékletek
Ábrajegyzék

1. A katasztrófavédelem központi, területi, és helyi szervei (készítette Rácz Sándor)
2. Alapirányítási vezetés (6/2016 BM OKF utasítás)
3. Alapirányítási vezetés (Készítette: Rácz Sándor a 6/2016 BM OKF Utasítás alapján)
4. Csoportirányítási vezetési struktúra (6/2016 BM OKF utasítás)
5. Vezetési törzs. [6/2016 BM OKF utasítás]
7. Egy németországi tűzoltóság elvi kivonulási rendje lakóház tűznél (illusztráció Rácz Sándor által szerkesztve)
8. Stratégiai, taktikai, és operatív döntések egymáshoz való viszonya a rendelkezésre álló idő, és a jövőbeni kihatások függvényében (Forrás Restás Á.; Rácz Sándor által szerkesztve)
9. Konkrét rendelkezési formák a tűzoltás szervezetében (Készítette: Rácz Sándor)
10. Középmagas-magas épülettűz intézkedési sémája (Készítette Nagy László ábrája alapján Rácz Sándor)
11. Sztochasztikus, és determinisztikus hatások alakulása az elnyelt dózis függvényében.
12. Sr-90 izotóp távolságfüggvényének mérése szcintillációs detektorral (Készítette: Rácz Sándor, saját mérés alapján)
13. Árnyékolási lehetőségek sugárzásnál (készítette a szerző)
15. Műveleti terület sugárveszélyes káresetnél (4/201.7 BM OKF Intézkedés)
16. Csarnok jellegű épület modellezése. (Készítette: Rácz Sándor)
17. Oltási kombinációk. (Készítette: Rácz Sándor)
18. Tűzoltás 2 lépcsőben. Oltási kombinációk. (Készítette: Rácz Sándor)
19. Térfogati modell a tárolt anyagokkal. (Készítette:Rácz Sándor)
20. A megkérdezettek tűzoltó szakmai gyakorlata (készítette: Rácz Sándor)
21. A megkérdezettek tűzoltásvezetői gyakorlata (készítette a Rácz Sándor)
22. A megkérdezettek életkora (készítette Rácz Sándor)
23. Összehasonlítva a két módszert (készítette Rácz Sándor)
25. Tűzoltásvezetők véleménye az általános tűzoltói felkészültségről tűzoltás, műszaki mentés esetén számos szélső értékkel (58 fő)
26. Tűzoltásvezetők véleménye az általános tűzoltói felkészültségről tűzoltás, műszaki mentés esetén szöveges szélső értékekkel (39 fő)
27. A különböző speciális beavatkozások összehasonlítása a védelem tekintetében (Készítette: Rácz Sándor)
28. A különböző speciális beavatkozások összehasonlítása a beavatkozás technikai feltételeinek tekintetében (Készítette: Rácz Sándor)
29. A különböző speciális beavatkozások összehasonlítása a kiképzettség tekintetében (Készítette: Rácz Sándor)
30. Az általános, és a sugárveszélyes tevékenységhez köthető kiképzettség, összehasonlítása (Készítette: Rácz Sándor)
31. Általános feladatokhoz tartozó képzettség és tűzoltásvezetői tapasztalat összefüggése (Készítette: Rácz Sándor)
32. Sugárveszélyes feladatokhoz tartozó képzettség és tűzoltásvezetői tapasztalat összefüggése (Készítette: Rácz Sándor)
33. Az intervenciós kör szakaszai (készítette: Rácz Sándor)
34. Intervenciós kör használata elméleti probléma megoldására (készítette: Rácz Sándor)
35. Intervenciós kör használata gyakorlati problémára (készítette: Rácz Sándor)
36. 60/2016. BM OKF Intézkedés Minősítő ív ellenőrző gyakorlathoz (részlet)
Táblázatok jegyzéke

1. Fővárosi KMSZ és elsőként riasztott gépjárműfecs kendőkiérkezése a káres etekhez (paneltüz) (Készítette: Rácz Sándor KAP online adatszolgáltató rendszer 2017.-es adatai alapján 2017.)

2. Megyei KMSZ és elsőként riasztott gépjárműfecs kendő kiérkezése a káres etekhez (paneltüz) (Készítette: Rácz Sándor KAP online adatszolgáltató rendszer 2017.-es adatai alapján)

3. V.-ös riasztási fokozatú 1000m²-nél nagyobb alapterületű létesítményben keletkezett tűzhöz riasztott szerek vonulási adatai (Készítette: Rácz Sándor KAP online adatszolgáltató rendszer 2017.-es adatai alapján 2017.)

4. Hangsúlyos vezetői funkciók, irányítási, és megvalósuló rendelkezési formák.(Készítette: Rácz Sándor)

5. Részlet a BM OKF intézkedés a hivatásos katasztrófavédelmi szervek műveletrányításának rendjéről és a riasztás szakmai szabályairól 1. sz. mellékletből „Faábra” (Szerkesztette: Rácz Sándor )


7. Dóziskorlátok a 487/2015 Korm. rendelet alapján. (készítette Rácz Sándor)

8. Beavatkozói dóziskorlátok a 4/2017. BM OKF Intézkedés alapján (készítette Rácz Sándor)

9. Sugárforrások csoportosítása. (készítette a Rácz Sándor)

10. Minőségi faktorok különböző sugárzásokra (készítette Rácz Sándor, Pátzay György előadása alapján)


13. Faábra részlet (tűzeset) (16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke részlet)

14. Faábra részlet (kategóriák ipari létesítményekhez) (16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke)
15. Módosított faábra (készítette Rácz Sándor a 16/2016. BM OKF Főigazgatói intézkedés 1. sz. függeléke alapján)

16. Érzékszerveink, és azok érzékelése (készítette: Rácz Sándor)

17. A tudásszerzés fokozatai Készítette Rácz Sándor - Fenton László

18. Szerelései idők a gyakorlaton (Készítette Rácz Sándor, Vincze Zsolt mérései alapján)

19. Szerelései idők a gyakorlaton (Készítette Rácz Sándor; Somogyi Gábor és Szili István mérése alapján)
Képek jegyzéke

1. Személyes vezető (jobb szélen), sugárvezető, és segéd sugárvezető munkavégzése (illusztráció) [http://fovaros.katasztrofavedelem.hu/keptar/27/0/2966](http://fovaros.katasztrofavedelem.hu/keptar/27/0/2966) (letöltve: 2017.11.28.)

2. Tűzoltásvezető (balról), rajparancsnok (jobb szélen), sugárvezető, segéd sugárvezető munkavégzése (illusztráció) [http://fovaros.katasztrofavedelem.hu/keptar/27/0/2966](http://fovaros.katasztrofavedelem.hu/keptar/27/0/2966) (letöltve: 2017.11.28.)


4. Elektronikus operatív doziméter (készítette: Rácz Sándor Németország Drezda 2017.)

5. Sr-90 izotóp beütésszám mérése Spectech szcintillációs detektorral. (Készítette: Rácz Sándor)

6-7. Sr-90 izotóp dózisteljesítményének mérése árnyékolás nélkül (bal oldali kép) és 0.25 cm-es 7367 mg/cm³ sűrűségű öalomlemezzel árnyékolva (jobb oldali kép) (Készítette: Rácz Sándor)

8. Kontamináció/Szennyeződés Mérésére alkalmas COMO 170 típusú műszer (Forrás: [http://www.graetz.com/como-170+M5c7c9be568f.html](http://www.graetz.com/como-170+M5c7c9be568f.html))

9-11. Személyi dózismérő, és elektronikus személyi doziméter egy gépjárműfecskenő Angliában (Készítette: Pántya Péter)


13-14. Operatív elektronikus doziméter Landesfeuerwehrschule Ausztria Eisenstadt (készítette: Rácz Sándor)


19. számú kép A gyakorlatra érkező tűzoltó-gépjárműfecskenők (Készítette: Rácz Sándor)

20. számú kép A méréshez használt TSA PRM470 dózisteljesítmény mérő műszer (Készítette: Rácz Sándor)

21. számú kép A berendezett helyszín a gyakorlaton (Készítette: Rácz Sándor)
Az értekezés kohéziós táblázata

<table>
<thead>
<tr>
<th>Kutatási célkitűzések</th>
<th>Hipotézisek</th>
<th>Módszerek</th>
<th>Eredmények</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Analizálom az alapvető tűzoltói feladatokat azok fontosságára, erőforrásigénye, és szervezése szempontjából.</td>
<td>2. Feltételezem, hogy a tűzoltói beavatkozásokhoz szükséges erőforrásokat, az elkülönülő erőt, eszközt és irányítást igénylő alapvető feladatok alapján kell meghatároznia. 1.-2. fejezet.</td>
<td>2. Megalkottam a tűzoltói beavatkozások során alkalmazandó súlyponti erőmegosztás fogalmát, és elfejeztem, amely pontosabb irányítást, és erőgazdálkodást tesz lehetővé a szükséges erők tekintetében, és elsőként tettem javaslatot az alkalmazásukra.</td>
<td></td>
</tr>
<tr>
<td>3. Beazonosítom, és megvizsgálok az általam kiválasztott káreseményeknek a hatékonyságát, legfontosabb elemeket az erőmegosztás szempontjából.</td>
<td>3. Feltételezem, hogy a káreseményekhez szükséges erőforrásokat, az elkötelezett erőt, eszközt és irányítást igénylő feladatok alapján kell meghatároznia. 1.-2. fejezet.</td>
<td>3. Bebizonyítottam, hogy egyes káreseményekhez riasztható tűzoltó erők pontosítására a terület alapú, a feladat alapú,</td>
<td></td>
</tr>
<tr>
<td>Fejezet</td>
<td>Témakör</td>
<td>Ismeretek</td>
<td>Kérdőíves vizsgálat</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3.</td>
<td>3. fejezet</td>
<td>Elemeztem a veszélyes tűzoltói beavatkozásokat valamint azok körülményeit, és a beavatkozások során felhasznált erőforrásokat. A tudományos megismerési folyamán előnyben részesítettem a műszaki szemléletű, mérésen alapuló módszereket.</td>
<td>Kérdőíves vizsgálattal kimutattam, hogy egyes speciális szaktudást igénylő beavatkozások tekintetében nincs összefüggés a tűzoltásvezetők szakmai tapasztalata, és a saját képzettségük megítélése között.</td>
</tr>
<tr>
<td>5.</td>
<td>5. fejezet</td>
<td>Feltételezem, hogy a tűzoltásvezetők bizonyos tűzoltói tevékenységek esetében eltérően vélekednek a felkészültségükről, amely által kimutatható melyek azok a területek amelyek fejleszthetők.</td>
<td>Kérdőíves attitűdvizsgálattal kimutattam, hogy egyes speciális szaktudást igénylő beavatkozások tekintetében nincs összefüggés a tűzoltásvezetők szakmai tapasztalata, és a saját képzettségük megítélése között.</td>
</tr>
<tr>
<td>6.</td>
<td>6. fejezet</td>
<td>Feltételezem, hogy a tűzoltóságok felkészítési rendszere új elemek integrációjával fejlesztható, amely hatással lehet a tűzoltói beavatkozások sikerességére.</td>
<td>Bebizonyítottam, hogy a kérdőíves vizsgálatokkal bebizonyítottam, hogy eltérések vannak a tűzoltásvezetők saját képzettségük megítélése tekintetében az általános, és egyes speciális szaktudást igénylő beavatkozások tekintetében.</td>
</tr>
</tbody>
</table>

Kivánok levonni a technikai, és a kiképzési fejlesztetőséget vonatkozóan.

5. A tűzoltók, és a tűzoltásvezetők felkészítésének vizsgálatával meg kívánom határozni azokat lehetőségeket, amelyek alkalmazásával mérhető módon lesz eredményesebb a felkészítés.
Kérdőívek

I. számú kérdőív

A kérdőív célja veszélyes anyag (biológiai, kémiai), és radioaktív anyag jelenlétében végrehajtott tűzoltói beavatkozások elemzése.

A kitöltés dátuma:…………………………

Helyszín:………………………………

1) A válaszadó neme:
   a. férfi
   b. nő

2) A válaszadó életkora:
   a. 20 év alatt
   b. 21-30 éves
   c. 31-40 éves
   d. 41-50 éves
   e. 50 év felett

3) Mennyi ideje tűzoltó?
   a. 0-4 év
   b. 5-9 év
   c. 10-15 év
   d. 15 évtől több

4) Tűzoltási, és műszaki mentési szakterületen dolgozik?
   a. igen
   b. nem

5) Végzett-e már tűzoltási, vagy műszaki mentési feladatot? (2 jó válasz is lehetséges)
   a. nem
   b. igen néhányszor, mint beosztott (kb.:……)
   c. sokszor, mint beosztott (kb.:……)
   d. igen néhányszor, mint tűzoltásvezető (kb.:……)
   e. sokszor, mint tűzoltásvezető (kb.:……)

6) Tűzoltás vezetésére jogosult?
   a. igen
   b. nem
7) Milyen beosztásban dolgozik?

8) Mit gondol, milyen jellegű veszélyeknek vannak kitéve a tűzoltók és a mentendő személyek egy veszélyes anyaggal kapcsolatos veszélyhelyzetnél (több válasz is lehetséges)?
   a. fizikai veszélynek
   b. kémiai veszélynek
   c. biológiai veszélynek
   d. ezek kombinációjának
   e. egyéb: .................................................................

9) Melyek azok az információk melyeket a legfontosabbnak tart a felderítésnél ismeretlen anyaggal kapcsolatban?

10) Volt-e már tapasztalata tűzoltás, vagy műszaki mentés során veszélyes anyaggal?
   a. nem
   b. 1-5 között
   c. 5-10 között
   d. 10-től több alkalommal ( kb.:……..)

11) Saját tapasztalata alapján tűzoltás, vagy műszaki mentés során veszélyes anyaggal kapcsolatban szükség volt-e valamilyen intézkedésre, amely a tűzoltók, vagy a lakosság védelmében kellett meghozni?
   a. nem
   b. 1-5 között
   c. 5-10 között
   d. 10-től több alkalommal ( kb.:……..)

12) Milyen védekezésre volt szükség?
   a. egyéni védőeszközökre (pl.légzőkészülék)
   b. csapat védőeszközökre
   c. távolsági védelemre
   d. speciális védőeszközökre (pl.: nehéz gázvédő ruha, mentesítés)
   e. kimenekítés
   f. kitelepítés
   g. elzárkoztatás
   h. egyéb: .................................................................
13) Ismeretlen veszélyes anyag vélemezett jelenléte esetén fontosnak tartja-e légtérelemző készülék használatát?
   a. igen  
   b. nem  

14) Használt-e már légtérelemző készüléket káresetnél?
   a. igen  
   b. nem  

15) Fontosnak tartja-e a Katasztrófavédelmi Mobil Labor segítségét a veszélyes anyagokkal kapcsolatos beavatkozásoknál
   a. nem, felkészültnek érzem magam  
   b. igen, de a lényeges döntéseket saját helyzetértékelésem alapján is meg tudom hozni  
   c. igen, szívesen támaszkodom az anyagazonosításban képzettebb, technikailag jobban felszerelt KML véleményére  
   d. igen, ha tehetném, minden esetben ez alapján hoznám meg a döntésemet  

16) Szén monoxid vélemezett jelenléte esetén fontosnak tartja-e légtérelemző készülék használatát (pl. Draeger Xam 2000) ?
   a. igen  
   b. nem  

17) Légtérelemző használatával a kárhelyszínen 2000 ppm szén-monoxid gázkoncentrációt mér. Milyen intézkedéseket hozna, amennyiben lakosság is érintett a helyszínen (több válasz is lehetséges)?
   a. védőeszközöket használnék (pl. légzőkészülék)  
   b. távolsági védelmet  
   c. kimenekítés  
   d. kitelepítés  
   e. elzárkóztatás  
   f. egyéb:..........................................................  

18) Légtérelemző használatával a kárhelyszínen ARH, és FRH közötti robbanásveszélyes gázkoncentrációt mér. Milyen intézkedéseket hozna, amennyiben lakosság is érintett a helyszínen (több válasz is lehetséges)?
   a. meghatározom a veszélyes, az átmeneti, és a biztonságos zónát  
   b. védőeszközöket használnék (pl. légzőkészülék)  
   c. távolsági védelmet  
   d. kimenekítés  
   e. kitelepítés  
   f. elzárkóztatás  
   g. egyéb:..........................................................
19) Mit gondol, mi jelentheti a legnagyobb problémát azonosítatlan veszélyes anyaggal kapcsolatos veszélyhelyzetnél (több válasz is lehetséges)?
   a. nem tudom a felderítést végrehajtani, ezért nem tudom a veszély nagyságát, formáját, irányát beazonosítani
   b. nem tudok döntést hozni a veszély elleni védekezés módjáról
   c. védekezek, de nem a megfelelő védelmet használom
   d. túlértékelem a veszélyt, késleltettem a beavatkozás megkezdését
   e. alulértékelem a veszélyt, veszélyeztettem a saját, a kollégáim, és az állampolgárok egészségét
   f. egyéb:………………………………………………………………………

20) Volt-e már tapasztalata tűzoltás, vagy műszaki mentés során radioaktív anyaggal?
   a. nem
   b. 1-5 között
   c. 5-10 között
   d. 10-től több alkalommal kb.:………

21) Mit gondol, mi jelentheti a legnagyobb problémát radioaktív anyaggal kapcsolatos veszélyhelyzetnél (több válasz is lehetséges)?
   a. fizikai veszélyek
   b. kémiai veszélyek
   c. biológiai veszélyek
   d. ezek kombinációja
   e. terület, felszerelés szennyeződés
   f. nem tudom meghatározni
   g. egyéb:………………………………………………………………………

22) Mit gondol, mitől függ az egészségkárosodás mértéke radioaktív anyagok közelében?
   a. a sugárzás típusától függ
   b. a távolságtól függ
   c. az árnyékolástól függ
   d. a sugárzás típusától; a távolságtól; az árnyékolástól, és az alkalmazott védőeszközöktől függ

23) Mit gondol, mennyi idő alatt lehet súlyos, visszafordíthatatlan egészségkárosodást elszenvedni radioaktív anyagok közelében?

………………………………………………………………………………………………………………………………………………

24) Mit gondol, technikai téren, melyek az eszközök, amelyek nélkülözhetetlenek veszélyes, vagy radioaktív anyaggal kapcsolatos káreseteknél?

……………………………………………………………………………………………………………………………………
25) Mi a véleménye arról, hogy a tűzoltásban részt vevőknek néha szükséges visszavonulnia, vagy szüneteltetnie a beavatkozást egy ismeretlen veszélyforrás (pl. veszélyes anyag, sugárforrás) jelenléte miatt, amíg az azonosításban képzett, méréshez szükséges technikai felszereltséggel rendelkező szervezet a helyszínre érkezik?
   a. egyetértek, mert: .................................................................
   b. nem érték egyet, mert ................................................................
   c. nem érték egyet, mert életmentés esetében vállalom a kockázatot
   d. egyéb: .................................................................................

26) A csomag tartalma egy 175,4 GBq aktivitású 137 Cs izotóp, amely közúti balesetnél megsérül (roncsolódással, vagy tűz által), és beszorult súlyos sérült is van a gépjárműben. A sugárforrástól 1 méterre 14 mGy/h lesz a dózisteljesítmény, ami ben 3,5 órát töltethetne a tűzoltó, de 10 cm-re 1,4 Gy/h lesz, amikor csak 2 percet a hatályos dóziskorlátotokat meghatározó jogszabály szerint. A ruházatra kerülve 30 perc alatt kb. 7 Sv effektív dózist kap, amely halálos. A KML helyszínre érkezése több mint 30 percre tehető, a sérült kiszabadítása legalább 30 percet venne igénybe a körülmények miatt.
   Megkezdené-e a beavatkozást?
   a. mindenképpen igen mert: .............................................................
   b. igen, de csak személyi doziméter használatával, amely jelzi az egyéni dóziskorlát elérését
   c. nem, még személyi doziméterrel sem
   d. csak a KML jelenlétében
   e. nem tudom megmondani
   f. egyéb: .....................................................................................

27) Milyen oktatási módszert tartana célravezetőnek a tűzoltóknak, radioaktív anyaggal kapcsolatos veszélyek megismeréséhez, a tűzoltói beavatkozások biztonságosabbá tételéhez?
   a. Elméleti;
   b. Gyakorlati;
   c. Elméleti+Gyakorlati,
   d. Nem fontos ez a típusú képzés, majd a szakemberek foglalkoznak vele
   e. egyéb: ..................................................................................
I. számú kérdőív első verzió

Kérdőív prominencia kutatáshoz

A kérdőív célja, egy meghatározott célcsoport véleményén keresztül a tűzoltók felkészültségének a vizsgálata. A vizsgálathoz hét fokozatú skálát használunk, ahol a két szélső érték szöveges (1. és 7.), és a köztük található számok alapján lehet a véleményt kifejezni, attól függően melyik kifejezéshez áll közelebb a válaszadó véleménye. A választ lehet aláhúzással, és karikával jelölni.

Életkora?

……………………………………………………………………………………………………

Neme?

……………………………………………………………………………………………………

Tűzoltó szakmai gyakorlata (év)?

……………………………………………………………………………………………………

Tűzoltásvezetői gyakorlata (év)?

……………………………………………………………………………………………………

1. Milyenek értékel a tűzoltók felkészültségét általános tűzoltói beavatkozások esetében (tűzoltás, műszaki mentés)?

A. Technikai értelemben (védelem)

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

B. Technikai értelemben (a beavatkozás eszközei)

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

C. Kiképzettség

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához
2. Milyennek értékel a tűzoltók felkészültségét nagy alapterületű létesítmények tüzeinél (ipari üzem, raktár) végrehajtott tűzoltói beavatkozások esetében?

A. Technikai értelemben (védelem)

| egyáltalán nem megfelelő a feladat ellátásához | 2 3 4 5 6 teljesen megfelelő a feladat ellátásához |

B. Technikai értelemben (a beavatkozás eszközei)

| egyáltalán nem megfelelő a feladat ellátásához | 2 3 4 5 6 teljesen megfelelő a feladat ellátásához |

C. Kiképzettség

| egyáltalán nem megfelelő a feladat ellátásához | 2 3 4 5 6 teljesen megfelelő a feladat ellátásához |

3. Milyennek értékel a tűzoltók felkészültségét veszélyes anyag környezetében végrehajtott tűzoltói beavatkozások esetében?

A. Technikai értelemben (védelem)

| egyáltalán nem megfelelő a feladat ellátásához | 2 3 4 5 6 teljesen megfelelő a feladat ellátásához |

B. Technikai értelemben (a beavatkozás eszközei)

| egyáltalán nem megfelelő a feladat ellátásához | 2 3 4 5 6 teljesen megfelelő a feladat ellátásához |

C. Kiképzettség

| egyáltalán nem megfelelő a feladat ellátásához | 2 3 4 5 6 teljesen megfelelő a feladat ellátásához |

4. Milyennek értékel a tűzoltók felkészültségét villamos hálózatok, berendezések környezetében végrehajtott tűzoltói beavatkozások esetében?
A. Technikai értelemben (védelem)

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

B. Technikai értelemben (a beavatkozás eszközei)

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

C. 

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

D. iképzettség


5. Milyennek értékel a tűzoltók felkészültségét sugárveszélyes környezetben végrehajtott tűzoltói beavatkozások esetében?

A. Technikai értelemben (védelem)

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

B. Technikai értelemben (a beavatkozás eszközei)

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához

C. Kiképzettség

egyáltalán nem megfelelő a feladat ellátásához 2 3 4 5 6 teljesen megfelelő a feladat ellátásához
II. számú kérdőív második verzió

Kérdőív prominencia kutatáshoz

A kérdőív célja, egy meghatározott célcsoport véleményén keresztül a tűzoltók felkészültségének a vizsgálata. A vizsgálathoz hét fokozatú skálát használunk, ahol a két szélső érték (egyáltalán nem megfelelő a feladat ellátásához =1.; teljesen megfelelő a feladat ellátásához =7.), és a köztük található számok alapján lehet a véleményt kifejezni, attól függően melyik kifejezéshez áll közelebb a válaszadó véleménye. A választ lehet aláhúzással, és karikával jelölni.

Életkora?

……………………………………………………………………………………

Neme?

……………………………………………………………………………………

Tűzoltó szakmai gyakorlata (év)?

……………………………………………………………………………………

Tűzoltásvezetői gyakorlata (év)?

……………………………………………………………………………………

1. Milyenek értékeli a tűzoltók felkészültségét általános tűzoltói beavatkozások esetében (tűzoltás, műszaki mentés)?

A. Technikai értelemben (védelem)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

B. Technikai értelemben (a beavatkozás eszközei)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

C. Kiképzettség

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2. Milyenek értékelik a tűzoltók felkészültségét nagy alapterületű létesítmények tüzeinél (ipari üzem, raktár) végrehajtott tűzoltói beavatkozások esetében?

<table>
<thead>
<tr>
<th></th>
<th>Technikai értelemben (védelem)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Technikai értelemben (a beavatkozás eszközei)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kiképzettség</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

3. Milyenek értékelik a tűzoltók felkészültségét veszélyes anyag környezetében végrehajtott tűzoltói beavatkozások esetében?

<table>
<thead>
<tr>
<th></th>
<th>Technikai értelemben (védelem)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Technikai értelemben (a beavatkozás eszközei)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kiképzettség</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
4. Milyenek értékeli a tűzoltók felkészültségét villamos hálózatok, berendezések környezetében végrehajtott tűzoltói beavatkozások esetében?

A. Technikai értelemben (védelem)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

B. Technikai értelemben (a beavatkozás eszközei)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

C. Kiképzettség

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

5. Milyenek értékeli a tűzoltók felkészültségét sugárveszélyes környezetben végrehajtott tűzoltói beavatkozások esetében?

A. Technikai értelemben (védelem)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

B. Technikai értelemben (a beavatkozás eszközei)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

C. Kiképzettség

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |